Nouryon is the world’s leading producer of organic peroxides for the curing of thermoset resins, coatings and specialty monomers. We’re home to the best known brands in the thermoset market, examples include Butanox®, Perkadox® and Trigonox®. We also have a whole range of auxiliary products, such as accelerators and promoters, to meet your specific production requirements.

This application guide introduces you to our thermoset product portfolio and helps you find a suitable curing system for your specific application.

Application
Centrifugal casting machine

Nouryon curing agents
Main peroxides: Butanox M-50 and Trigonox 44B
Special peroxides: Trigonox 51

Main products
• Pipes for transport of water and other liquid materials
• Storage tanks

Reactivity figures
Trigonox 44B

Cure of 4 mm laminates at 20°C
The speed of cure is expressed as the time to reach Barcol hardness of 25-30.

<table>
<thead>
<tr>
<th></th>
<th>GEL TIME (min.)</th>
<th>TIME TO PEAK (min.)</th>
<th>PEAK EXOTHERM (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 phr Trigonox 44B + 0.5 phr Accelerator NL-49PN</td>
<td>15</td>
<td>28</td>
<td>67</td>
</tr>
<tr>
<td>2 phr Butanox M-50 + 0.5 phr Accelerator NL-49PN</td>
<td>13</td>
<td>36</td>
<td>44</td>
</tr>
<tr>
<td>2 phr Trigonox 44B + 1.0 phr Accelerator NL-49PN</td>
<td>8</td>
<td>18</td>
<td>97</td>
</tr>
<tr>
<td>2 phr Butanox M-50 + 1.0 phr Accelerator NL-49PN</td>
<td>8</td>
<td>26</td>
<td>64</td>
</tr>
</tbody>
</table>
Cure of 10 mm laminates at 20°C

<table>
<thead>
<tr>
<th>BARCOL</th>
<th>RES STYRENE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25-30 (h)</td>
<td>24 h 20°C (%)</td>
<td>+8 h 80% (%)</td>
<td></td>
</tr>
<tr>
<td>2 phr Trigonox 44B + 0.5 phr Accelerator NL-49PN</td>
<td><1</td>
<td>4.4</td>
<td>0.1</td>
</tr>
<tr>
<td>2 phr Butanox M-50 + 0.5 phr Accelerator NL-49PN</td>
<td>15</td>
<td>6</td>
<td>0.3</td>
</tr>
<tr>
<td>2 phr Trigonox 44B + 1.0 phr Accelerator NL-49PN</td>
<td><<1</td>
<td>0.9</td>
<td>0.2</td>
</tr>
<tr>
<td>2 phr Butanox M-50 + 1.0 phr Accelerator NL-49PN</td>
<td>1</td>
<td>5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cure of 10 mm laminates at 20°C</th>
<th>GEL TIME (min.)</th>
<th>TIME TO PEAK (min.)</th>
<th>PEAK EXOTHERM (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 phr Trigonox 44B + 1.0 phr Accelerator NL-49PN</td>
<td>18</td>
<td>23</td>
<td>141</td>
</tr>
<tr>
<td>1 phr Butanox M-50 + 1.0 phr Accelerator NL-49PN</td>
<td>16</td>
<td>33</td>
<td>111</td>
</tr>
</tbody>
</table>

Centrifugal casting
Cure data

Butanox M-50

Butanox M-50 is a general purpose methyl ethyl ketone peroxide (MEKP) for the curing of unsaturated polyester resins in the presence of a cobalt accelerator at room and elevated temperatures.

The curing system Butanox M-50/cobalt accelerator is particularly suitable for the curing of gelcoat resins, laminating resins, lacquers and castings; moreover, the manufacture of light resistant parts may be possible contrary to the curing system benzoyl peroxide/amine accelerator.

Practical experience throughout many years has proven that by the guaranteed low water content and the absence of polar compounds in Butanox M-50, this peroxide is very suitable in GRP products for e.g. marine applications.

For room temperature application it is necessary to use Butanox M-50 together with a cobalt accelerator (e.g. Accelerator NL-49PN)

Dosing
Depending on working conditions, the following peroxide and accelerator dosage levels are recommended:

- **Butanox M-50**
 - 1 - 4 phr

- **Accelerator NL-49PN**
 - 0.5 - 3 phr

* (parts per hundred resin)

Cure characteristics
In a high reactive standard orthophthalic resin in combination with Accelerator NL-49PN (= 1% cobalt) the following application characteristics were determined:

Gel times at 20°C
- 2 phr Butanox M-50 + 0.5 phr Accelerator NL-49PN: 12 minutes
- 2 phr Butanox M-50 + 1.0 phr Accelerator NL-49PN: 7 minutes

Cure of 1 mm pure resin layer at 20°C
The speed of cure is expressed as the time to reach a Persoz hardness of respectively 30, 60 and 120 s.

<table>
<thead>
<tr>
<th>Persoz</th>
<th>30</th>
<th>60</th>
<th>120</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 phr Butanox M-50 + 0.5 phr Accelerator NL-49PN</td>
<td>2.4</td>
<td>4.1</td>
<td>13</td>
<td>h</td>
</tr>
<tr>
<td>2 phr Butanox M-50 + 1.0 phr Accelerator NL-49PN</td>
<td>1.7</td>
<td>3.0</td>
<td>9.5</td>
<td>h</td>
</tr>
</tbody>
</table>

Centrifugal casting
Cure of 4 mm laminates at 20°C
4 mm laminates have been made with a 450 g/m² glass chopped strand mat. The glass content in the laminates is 30% (w/w).

The following parameters were determined:
- Time-temperature curve.
- Speed of cure expressed as the time to achieve a Barcol hardness (934-1) of 0-5 and 25-30 respectively.
- Residual styrene content after 24 h at 20°C and a subsequent postcure of 8 h at 80°C.

<table>
<thead>
<tr>
<th></th>
<th>GEL TIME (min.)</th>
<th>TIME TO PEAK (min.)</th>
<th>PEAK EXOTHERM (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 phr Butanox M-50 + 0.5 phr Accelerator NL-49PN</td>
<td>13</td>
<td>36</td>
<td>44</td>
</tr>
<tr>
<td>2 phr Butanox M-50 + 1.0 phr Accelerator NL-49PN</td>
<td>8</td>
<td>26</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>BARCOL</th>
<th>RESIDUAL STYRENE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-5 (h)</td>
<td>25-30 (h)</td>
</tr>
<tr>
<td>2 phr Butanox M-50 + 0.5 phr Accelerator NL-49PN</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>2 phr Butanox M-50 + 1.0 phr Accelerator NL-49PN</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Pot life at 20°C
Pot lives were determined of a mixture of Butanox M-50 and a non-preaccelerated UP resin at 20°C.

2 phr Butanox M-50 | 12 h
4 phr Butanox M-50 | 7 h

Solubility
Butanox M-50 is miscible with phthalates and slightly miscible with water.

Colors
Butanox M-50 is available in vanishing red and red.
Trigonox 44B

Trigonox 44B is an acetyl acetone peroxide formulation for the curing of unsaturated polyester resins in the presence of a cobalt accelerator at room and elevated temperatures.

With the curing system Trigonox 44B/cobalt accelerator a much faster speed of cure may be achieved than with curing systems based on a MEKP plus cobalt accelerator, at room and elevated temperatures. Normally the gel times with Trigonox 44B are comparable to those with Butanox M-50.

Trigonox 44B is particularly suitable in those applications where a fast mold-turnover is required, e.g. for the cold press molding or resin injection molding techniques.

The system Trigonox 44B/cobalt accelerator will give a higher peak exotherm than a standard MEKP/cobalt accelerator system. Due to this fact, it is recommendable to avoid the production of too thick laminates in one operation. At low temperatures a reasonable speed of cure is still obtained when Trigonox 44B is used in combination with large amounts of cobalt accelerator possibly in combination with N,N Dimethylaniline as promotor.

Dosing

Depending on working conditions, the following peroxide and accelerator dosage levels are recommended:

<table>
<thead>
<tr>
<th>Trigonox 44B</th>
<th>Accelerator NL-49PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 2 phr</td>
<td>0.5 - 3 phr</td>
</tr>
</tbody>
</table>

(parts per hundred resin)

In a high reactive standard orthophthalic resin in combination with Accelerator NL-49PN (= 1% cobalt) the following application characteristics were determined:

Gel times at 20°C

<table>
<thead>
<tr>
<th>Formula</th>
<th>Gel Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 phr Trigonox 44B + 0.5 phr Accelerator NL-49PN</td>
<td>15 minutes</td>
</tr>
<tr>
<td>2 phr Butanox M-50 + 0.5 phr Accelerator NL-49PN</td>
<td>12 minutes</td>
</tr>
<tr>
<td>2 phr Trigonox 44B + 1.0 phr Accelerator NL-49PN</td>
<td>8 minutes</td>
</tr>
<tr>
<td>2 phr Butanox M-50 + 1.0 phr Accelerator NL-49PN</td>
<td>7 minutes</td>
</tr>
</tbody>
</table>

Cure of 1 mm pure resin layer at 20°C

The speed of cure is expressed as the time to reach a Persoz hardness of respectively 30, 60 and 120 s.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Persoz 30</th>
<th>Persoz 60</th>
<th>Persoz 120</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 phr Trigonox 44B + 0.5 phr Accelerator NL-49PN</td>
<td><1</td>
<td>1.5</td>
<td>5</td>
</tr>
<tr>
<td>2 phr Butanox M-50 + 0.5 phr Accelerator NL-49PN</td>
<td>2.4</td>
<td>4.1</td>
<td>13</td>
</tr>
<tr>
<td>2 phr Trigonox 44B + 1.0 phr Accelerator NL-49PN</td>
<td><1<1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2 phr Butanox M-50 + 1.0 phr Accelerator NL-49PN</td>
<td>1.7</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>
Cure of 4 mm laminates at 20°C
4 mm laminates have been made with a 450 g/m² glass chopped strand mat. The glass content in the laminates is 30% (w/w).

The following parameters were determined:
- Time-temperature curve.
- Speed of cure expressed as the time to achieve a Barcol hardness (934-1) of 25-30.
- Residual styrene content after 24 h at 20°C and a subsequent postcure of 8 h at 80°C.

<table>
<thead>
<tr>
<th></th>
<th>GEL TIME (min.)</th>
<th>TIME TO PEAK (min.)</th>
<th>PEAK EXOTHERM (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 phr Trigonox 44B + 0.5 phr Accelerator NL-49PN</td>
<td>15</td>
<td>28</td>
<td>67</td>
</tr>
<tr>
<td>2 phr Butanox M-50 + 0.5 phr Accelerator NL-49PN</td>
<td>13</td>
<td>36</td>
<td>44</td>
</tr>
<tr>
<td>2 phr Trigonox 44B + 1.0 phr Accelerator NL-49PN</td>
<td>8</td>
<td>18</td>
<td>97</td>
</tr>
<tr>
<td>2 phr Butanox M-50 + 1.0 phr Accelerator NL-49PN</td>
<td>8</td>
<td>26</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>BARCOL</th>
<th>RESIDUAL STYRENE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25-30 (h)</td>
<td>24 h 20°C (%)</td>
</tr>
<tr>
<td>2 phr Trigonox 44B + 0.5 phr Accelerator NL-49PN</td>
<td><1</td>
<td>4.4</td>
</tr>
<tr>
<td>2 phr Butanox M-50 + 0.5 phr Accelerator NL-49PN</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>2 phr Trigonox 44B + 1.0 phr Accelerator NL-49PN</td>
<td><<1</td>
<td>0.9</td>
</tr>
<tr>
<td>2 phr Butanox M-50 + 1.0 phr Accelerator NL-49PN</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Pot life at 20°C
Pot lives were determined of a mixture of Trigonox 44B and a non-preaccelerated UP resin at 20°C.

2 phr Trigonox 44B 20 h
4 phr Trigonox 44B 11 h
Accelerator NL-49PN

The curing of unsaturated polyester resins at ambient temperatures can in general not be performed by an organic peroxide alone. The radical formation, which is necessary to start the polymerization reaction, is at ambient temperatures with most generally applied organic peroxides too slow. To speed up the radical formation in a controllable way organic peroxides must therefore be used in combination with a so called accelerator.

For ketone peroxides like methyl ethyl ketone peroxides, cyclohexanone peroxides and acetylacetone peroxide a cobalt accelerator must be used.

For this purpose the following formulations of cobalt 2 ethylhexanoate also called cobalt octoate are available:

- Accelerator NL-49PN: 1% cobalt in aliphatic ester
- Accelerator NL-51PN: 6% cobalt in aliphatic ester
- Accelerator NL-53N: 10% cobalt in white spirit

The reactivity of the various cobalt accelerators is directly correlated with the cobalt content. The use of a lower concentrated version increases the dosage accuracy. However, when the dosage level of e.g. Accelerator NL-49PN must be higher than approx. 3% to achieve the required cure performance, it is advised to use a higher concentrated cobalt accelerator e.g. 0.5% Accelerator NL-51PN.

The cure characteristics of an unsaturated polyester resin/ketone peroxide mixture can, apart from the choice of the ketone peroxide, very effectively be influenced by the dosage level of the cobalt accelerator. The dosage level of the cobalt accelerator expressed as Accelerator NL-53N (10% cobalt) can for this purpose be varied between e.g. 0.025% up to approximately 0.6% calculated on the UP resin.

When the right peroxide has been chosen and still the required gel time and cure characteristics cannot be obtained with the cobalt accelerator alone, it is possible to increase the reactivity of the cobalt accelerator by the extra addition of a promoter like N,N-Dimethylaniline or Promotor D (N,N Diethylacetoacetamide).

This adaptation of the accelerator system may be necessary when:
- a very short gel time and/or a very fast cure is required e.g. for resin transfer molding or the production of polymer concrete
- highly inhibited and/or low reactive resins must be cured e.g.
- bisphenol A/fumarate and vinylster resins.

The cure system ketone peroxide/cobalt accelerator can further be characterized by:
- the relatively low color, related to the cobalt dosage, of the cured molding
- a very good UV light resistance of the molded parts
- the long pot life of the cobalt accelerator in the polyester resin
- A possible disadvantage may be that the cure system is more sensitive for moisture, pigments and fillers than the cure system dibenzoyl peroxide/ amine accelerator.

Cobalt accelerators can also be used to increase the reactivity of organic peresters, which are applied for the cure of unsaturated polyester resins at elevated temperatures. Moreover, the use of a cobalt accelerator gives in general a lower residual styrene content in the cured molding. For this application peresters like Trigonox C, Trigonox 21S, Trigonox 42S and the special mixture Trigonox 93 can be used.

Dosage

Depending on working conditions the following accelerator dosage level is recommended:

- **Accelerator NL-49PN**: 0.25 - 3.0 phr

* (parts per hundred resin)
Cure characteristics
In the following cure experiments the performance of cobalt 2 ethylhexanoate as accelerator will be demonstrated.

Gel times at 20°C
in a standard orthophthalic resin with various ketone peroxides

<table>
<thead>
<tr>
<th>ACCELERATOR NL-49PN (PHR)</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 phr Butanox M-60</td>
<td>22</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>2 phr Butanox LPT-IN</td>
<td>65</td>
<td>31</td>
<td>20</td>
</tr>
<tr>
<td>2 phr Cyclonox LE-50</td>
<td>20</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>2 phr Trigonox 44B</td>
<td>24</td>
<td>14</td>
<td>8</td>
</tr>
</tbody>
</table>

in various resins with Dimethylaniline, 100% as promoter

standard orthophthalic resin
2 phr Butanox M-60 + 1 phr Acc. NL-49PN 7 min.
2 phr Butanox M-60 + 1 phr Acc. NL-49PN + 0.05 phr Dimethylaniline, 100% 4 min.
2 phr Butanox M-60 + 1 phr Acc. NL-49PN + 0.10 phr Dimethylaniline, 100% 2 min.

2 phr Trigonox 44B + 1 phr Acc. NL-49PN 8 min.
2 phr Trigonox 44B + 1 phr Acc. NL-49PN + 0.05 phr Dimethylaniline, 100% 5 min.
2 phr Trigonox 44B + 1 phr Acc. NL-49PN + 0.10 phr Dimethylaniline, 100% 3 min.

bisphenol A/fumarate resin
2 phr Butanox LPT-IN + 3 phr Acc. NL-49PN 145 min.
2 phr Butanox LPT-IN + 3 phr Acc. NL-49PN + 0.05 phr Dimethylaniline, 100% 65 min.
2 phr Butanox LPT-IN + 3 phr Acc. NL-49PN + 0.10 phr Dimethylaniline, 100% 34 min.

bisphenol A/vinylester resin
2 phr Butanox LPT-IN + 3 phr Acc. NL-49PN 32 min.
2 phr Butanox LPT-IN + 3 phr Acc. NL-49PN + 0.05 phr Dimethylaniline, 100% 22 min.
2 phr Butanox LPT-IN + 3 phr Acc. NL-49PN + 0.10 phr Dimethylaniline, 100% 16 min.

Time-temperature curves at elevated temperatures (70°C and 90°C)

<table>
<thead>
<tr>
<th>TEMPERATURE (°C)</th>
<th>CURE TIME (min.)</th>
<th>GEL TIME (min.)</th>
<th>TIME TO PEAK (min.)</th>
<th>PEAK EXOTHERM (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>916</td>
<td>233</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>35</td>
<td>214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>16</td>
<td>258</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.3</td>
<td>1.5</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>925</td>
<td>236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>26</td>
<td>258</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pot life at 20°C
The pot life has been determined of Accelerator NL-49PN in a standard orthophthalic polyester resin at 20°C.

1 phr Accelerator NL-49PN 6 months
Contact us

For product inquiry and ordering information, please contact your Nouryon account manager or regional Nouryon sales office.

Americas
US and other countries
Citadel Center
131 S Dearborn St, Suite 1000
Chicago IL 60603-5566
USA
T: +1 800 828 7929 (US only)
E: polymer.amer@nouryon.com

Mexico
Av. Morelos No. 49
Col. Tecamachalco
Los Reyes La Paz Estado de Mexico
C.P. 56500 Mexico
T: +52 55 5858 0700
E: polymer.mx@nouryon.com

Brazil
Rodavía Nouryon no. 707
Portão A – Planta C
Bairro São Roque da Chave
13295-000 Itupeva - São Paulo
Brazil
T: +55 11 4591 8800
E: polymer.sa@nouryon.com

Europe, India, Middle East and Africa
France, Italy, Spain and Portugal
Av. de Castelldefels, km 4.65
08820 El Prat de Llobregat
Barcelona
Spain
T: +34 933 741991
E: polymer.es@nouryon.com

India
North Block 801, Empire Tower,
Reliable Cloud City Campus,
Off Thane – Belapur Road
Airoli, Navi Mumbai - 400708
India
T: +91(0) 22 68426700
E: polymer.emeia@nouryon.com

Middle East
Silicon park, Building A6
Office no 402, 4th floor
Dubai Silicon Oasis
Dubai
United Arab Emirates
T: +971 4 2471500
E: communications.me@nouryon.com

Russia and CIS
Srnolnaya Str., 24D,
Commercial Tower Meridian
125445 Moscow
Russia
T: +7 495 766 16 06
E: info.moscow@nouryon.com

Other countries
Zutphenweg 10
7418 AJ Deventer
The Netherlands
E: polymer.emeia@nouryon.com

Asia Pacific
Room 2501 & 26F, Building A
Caohejing Center
No. 1520 Gumei Road, Xuhui District
Shanghai 200233
P.R. China
T: +86 21 2289 1000
E: polymer.apac@nouryon.com

Additional information
Product Data Sheets (PDS) and Safety Data Sheets (SDS) for our polymerization initiators are available at www.nouryon.com

All information concerning this product and/or suggestions for handling and use contained herein are offered in good faith and are believed to be reliable. Nouryon, however, makes no warranty as to accuracy and/or sufficiency of such information and/or suggestions, as to the product's merchantability or fitness for any particular purpose, or that any suggested use will not infringe any patent. Nouryon does not accept any liability whatsoever arising out of the use of or reliance on this information, or out of the use or the performance of the product. Nothing contained herein shall be construed as granting or extending any license under any patent. Customer must determine for himself, by preliminary tests or otherwise, the suitability of this product for his purposes. The information contained herein supersedes all previously issued information on the subject matter covered. The customer may forward, distribute, and/or photocopy this document only if unaltered and complete, including all of its headers and footers, and should refrain from any unauthorized use. Don't copy this document to a website.

Butanox, Laurox, Nouryact, Nourtainer, Perkadox and Trigonox are registered trademarks of Nouryon Functional Chemicals B.V. or affiliates in one or more territories.

© January 2021
We are a global specialty chemicals leader. Industries worldwide rely on our essential chemistry in the manufacture of everyday products such as paper, plastics, building materials, food, pharmaceuticals, and personal care items. Building on our nearly 400-year history, the dedication of our 10,000 employees, and our shared commitment to business growth, strong financial performance, safety, sustainability, and innovation, we have established a world-class business and built strong partnerships with our customers. We operate in over 80 countries around the world and our portfolio of industry-leading brands includes Eka, Dissolvine, Trigonox, and Berol.