

Date: 20.07.2020

To.

Additional Principal Chief Conservator of Forests
Ministry of Environment, Forest & Climate Change
Regional Office, (West Central Zone)
Ground floor, East wing,
New Secretary Building
Civil lines, Nagpur – 440001

Subject : Six-Monthly Environmental Compliance Status Report of Stipulated Conditions of

Environmental Clearance.

Reference: Environmental Clearance No. SEIAA-EC-0000000263 dated 26th April, 2018

Respected Sir,

With reference to the above Subject, we are submitting Environmental Compliance Status Report of M/s Nouryon Chemicals India Pvt. Ltd. (Formerly M/s Akzo Nobel India Limited) located at Plot No. E-18, 19, 20 & C-61 (Part), MIDC Mahad, Taluka Mahad, District Raigad, Maharashtra; for the period from October 2019 to March 2020 along with supporting documents (Refer Enclosed Annexures).

We assure you for submission of six monthly environmental compliance status reports on regular basis.

Thanking you,

Yours faithfully M/s Nouryon Chemicals India Pvt. Ltd. (Formerly M/s Akzo Nobel India Limited)

Authorized Signatory

C. C. to: MoEF & CC, Delhi,

CPCB, Zonal office, Vadodara,

Environment Dept., Mantralaya, Mumbai

MPCB, Mumbai (Sion).

Six-Monthly Environmental Compliance Status Report of Stipulated Conditions of Environmental Clearance (October 2019 to March 2020)

Submitted by

M/s Nouryon Chemicals India Pvt. Ltd. (Formerly M/s Akzo Nobel India Limited) Plot No. E - 18, 19, 20 & C- 61 (Part) MIDC Mahad, Mahad, Maharashtra

CONTENT

Sr. No.	TOPIC	Page No.
1.	Introduction & Project Description	3 - 5
2.	Compliance on Stipulated Conditions of Environmental Clearance	6 - 11

CHAPTER 1: INTRODUCTION & PROJECT DESCRIPTION

1.1 Introduction

The project of M/s Nouryon Chemicals India Pvt. Ltd. (Formerly M/s Akzo Nobel India Limited) is located at plot No. E-18, 19, 20 & C-61 (Part), MIDC Mahad, Taluka Mahad, District Raigad, Maharashtra; which is in notified industrial zone of Government of Maharashtra. This Project has awarded with environmental clearance by State Level Environment Impact Assessment Authority, vide letter No. SEIAA-EC-0000000263 dated 26.04.2018; copy enclosed as Annexure-1. The company was originally incorporated with name Akzo Nobel India Limited and name of company has changed to M/s Nouryon Chemicals India Pvt. Ltd. under the Companies act, 1956; incorporation certificate copies are enclosed as Annexure-2. Company has obtained with vide No. Format 1.0/CC/UAN No. 0000003495/2003000030 dated 12.03.2020; copy is enclosed as Annexure-3.

1.2 Project Description

Salient Features of the Project:

Location	Plot No. E-18, 19, 20 & C-61 (Part/Part), MIDC Mahad,			
	Taluka Mahad, District Raigad, Maharashtra.			
Co-ordinates of the location	Latitude - 18°6'43.11"N			
	Longitude - 73°29'27.24"E			
	The elevation from mean sea level is 20 m.			
Location accessibility	Railway Station : Veer Railway Station is 17 km away from project site.			
	Highway : National Highway No. 66 is 3.58 km			
	away from project site.			
Type & Scale of industry	Large Scale Manufacturing Industry			
Cost of the project	69.48 Cr.			
Area statement	Total Plot Area - 86478.0 sq.m			
	Total Built Up Area - 8748 sq.m			
	Green Belt Area - 29995 sq.m			
	Parking Area - 2271.8 sq.m			
Product details/Byproduct details	Sr. No. Product Name Quantity in MT/M			
	1. Organic Peroxides 284.96 (Pure)			

	2. 3.	Refilling/ blending of Metal Alkyls (Pure) Sodium Chloride (NaCl)	141.83		
Raw materials (including process chemicals, catalysts & additives)		List Enclosed as Annexure-4.			
Water supply	Source – Maharashtra Industrial Development Corporation.				
	Permission has obtained from MIDC for water supply copy enclosed as Annexure-5 and MIDC water bill copy of April 2019 month is enclosed as Annexure-6.				
Water requirement	Total - 640 CMD Domestic- 10 CMD Process - 470 CMD Cooling Tower & Boiler feed – 60 CMD Gardening - 100 CMD				
Effluent generation	Domestic/Sewage effluent – 8.0 CMD Trade effluent – 496 CMD				
Power	Source : MSEDCL, Total demand – 990 KVA				
Gaseous emissions from different sources	From D.C. Cot (FOO K)/A) stools beingt 10 mg				
Fuel	HSD- 174 Lit/Hr LDO – 834 Kg/Day				
Status of approvals from statutory bodies	 Environmental Clearance. Consent to Establish. 				
	3. Consent to Operate.4. Certificate of Incorporation.				
	5. Factory license				

1.3 Present Status of the Project

The project is at operational phase.

1.4 Purpose of the Report

This six-monthly environmental compliance status report has to be submitted as per the conditions stipulated in the Environmental Clearance. The aim of six monthly compliance is to verify:

- > That the project does not have any adverse environmental impact in the project area and it's surrounding.
- ➤ Compliance achieved with the conditions stipulated in the Environmental Clearance.
- ➤ That the environmental mitigation measures as suggested in the approved Form-1, Consolidated form & Environmental Management Plan (EMP) is implemented by Project Management.
- ➤ The project proponent is implementing the environmental safeguards in true spirit.

CHAPTER 2 : COMPLIANCE STATUS ON STIPULATED CONDITIONS OF ENVIRONMENTAL CLEARANCE CONDITIONS

2.1 Conditions along with compliance status is discussed below in detail

Sr. No.	Conditions of Environmental Clearance	Status of Compliance	
SPECIFIC	CONDITION:		
(i)	PP to take utmost care to mitigate the findings of the life cycle analysis to reduce global warming potential and increase the sustainability index.	Project proponent is taking care of environment. Life cycle analysis study has completed during EIA and proponent is taking care of mitigation findings of LCA.	
GENERA	L CONDITIONS:		
(i)	PP to achieve Zero Liquid Discharge; PP shall ensure that there is no increase in the effluent load to CETP.	Industry has provided ETP consisting of primary, secondary & tertiary treatment and as per consent to operate vide No. Format 1.0/CC/UAN No. 0000003495/2003000030 dated 12.03.2020; schedule I (C); industry has permission to discharge treated effluent to MMA-CETP for further treatment and disposal. CETP NOC copy is enclosed as Annexure-7.	
(ii)	73 TPH boiler should have stack height of 68 m and flue gases shall be passed through an ESP of 99.9% efficiency before being led into the 68 m stack.	height is 30 meter; which is adequate stack	
(iii)	No additional land shall be used /acquired for any activity of the project without obtaining proper permission.	Project proponent has consented to condition. No additional land will be used for any activity without obtaining prior environmental clearance.	
(iv)	PP to take utmost precaution for the health and safety of the people working in the unit as also for protecting the environment.	Complied. Company is being taken utmost precaution for the health and safety of the people working in the unit as well as for protecting the environment by implementing EHS policy and Standard Operating Process (SOP) for handling of Chemicals, Solid hazardous waste and solvents. Company conducts the periodic health checkup, mock drills, internal and external safety training for workers to ensure safe work environment within company premises.	
(v)	Proper Housekeeping programmers shall be implemented.	Complied. To ensure clean & obstacle free shop floor, housekeeping is being maintained at plant. Nine numbers of people has deputed for	

		housekeeping.
(vi)	In the event of the failure of any pollution control system adopted by the unit, the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieve.	Project Proponent has consented to condition.
(vii)	A stack of adequate height based on DG set capacity shall be provided for control and dispersion of pollutant from DG set. (If applicable).	Complied. A stack of 10 m height is provided to control and dispersion of pollutants from DG set (capacity-500 KVA).
(viii)	A detailed scheme for rainwater harvesting shall be prepared and implemented to recharge ground water.	Complied. Project proponent is working on implementation of rainwater harvesting system.
(ix)	Arrangement shall be made that effluent and storm water does not get mixed.	Complied. Effluent is being treated in ETP and treated effluent is being discharged to CETP for further treatment and disposal and separate storm water drainage line is provided to collect storm water therefore, there is no possibility to mix effluent and storm water.
(x)	Periodic monitoring of ground water shall be undertaken and results analyzed to ascertain any change in the quality of water. Results shall be regularly submitted to the Maharashtra Pollution Control Board.	Complied. Ground water monitoring has done through MoEF & NABL authorized laboratory; obtained results are within limit of standards. Report copies are enclosed as Annexure-8.
(xi)	Noise level shall be maintained as per standards. For people working in the high noise area, requisite personal protective equipment like earplugs etc. shall be provided.	Complied. Noise levels are monitored through MoEF & NABL laboratory and results are well within limits as per standards, The report copy is enclosed as Annexure-9. PPE's such as earplugs earmuffs are provided to workers.
(xii)	The overall noise levels in and around the plant are shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures, etc. on all sources of noise generation. The ambient noise levels shall confirm to the standards prescribed under Environment (Protection) Act, 1986 Rules, 1989.	Complied. Noise levels are monitored through MoEF & NABL laboratory and results are well within limits as per standards, The report copy enclosed as Annexure-9. Acoustic enclosures, hoods and silencers are provided to all noise generating equipment's as per requirements. i.e. D.G. Set.
(xiii)	Green belt shall be developed & maintained around the plant periphery. Green Belt Development shall be carried out considering CPCB	Complied. Company has well designed CSR policy; company has planted more than 500 trees near Mahad area. Project proponent has planted 529

	guidelines including selection of plant species and in consultation with the local DFO/ Agriculture Dept.	number of trees near in industry premises; tree list is enclosed as Annexure-10.
(xiv)	Adequate safety measures shall be provided to limit the risk zone within the plant boundary, in case of an accident. Leak detection devices shall also be installed at strategic places for early detection and warning.	Complied. Fire extinguisher system is provided at plant site and all raw materials are in liquid form; there is provision of dyke wall at storage area.
(xv)	Occupational health surveillance of the workers shall be done on a regular basis and record maintained as per Factories Act.	Complied. Occupational health surveillance of the employees/workers is being done and records are maintained as per Factories Act, copies are enclosed as Annexure-11.
(xvi)	The company shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling.	Complied. Fire hydrant system has developed and implemented at plant site. Fire NOC has obtained from MIDC; copy enclosed as Annexure-12.
(xvii)	The project authorities must strictly comply with the rules and regulations with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Waste (Management and Handling) Rules, 2003 (amended). Authorization from the MPCB shall be obtained for collections/treatment /storage/disposal of hazardous wastes.	Complied. Authorization under Rule 5 of the Hazardous & Other Wastes (M & TM) Rules 2016 is obtained from Maharashtra Pollution Control Board, vide letter No.Format 1.0/CC/UAN No. 0000003495/2003000030 dated 12.03.2020; and hazardous waste is being stored in separate designated area and disposal through CHWTSDF, records are being maintained in the form of Manifest (Form-10); copies are enclosed as Annexure-13. Annual return of hazardous waste (Form-4) is being submitted on MPCB portal copy is enclosed as Annexure-14.
(xviii)	Regular mock drills for the on-site emergency management plan shall be carried out. Implementation of changes /improvements required, if any, in the on-site management plan shall be ensured.	It is being complied. Periodic mock drills are being carried out to identify required changes in on site emergency plan. The same is being updated as per requirement. Last mock drill is done for emergency preparedness dated 05.06.2019; mock drill report copy is enclosed as Annexure-15.
(xix)	A separate environment management cell with qualified staff shall be set up for implementation of the stipulated environmental safeguards.	Complied. Separate environment management cell has provided for smooth working of environmental safeguards. Copy is enclosed as Annexure-16.
(xx)	Separate funds shall be allocated for implementation of environmental protection measures/EMP along with item-wise breaks-up. These cost shall be included as part of the project cost. The funds earmarked for the environment protection measures	Complied. Separate funds are allocated for environmental protection measures /EMP, item-wise break-up is below. Sr. Cost of environmental Capital Cost & No. protection measures recurring cost

	shall not be diverted for other			(Rs.) in lacks
	purposes and year-wise expenditure	1.	Air Pollution Control	0.35
	should reported to the MPCB & this department.	2.	Water Pollution Control	12
		3.	Noise Pollution Control	0.3
		4.	Environment monitoring and Management	0.6
		5.	Occupational health and safety	3.65
		6.	Green Belt	5.5
		7.	Solid waste management	8
		8.	Rain water harvesting	0
			Total Cost	30.4
(xxi)	The project management shall advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the Marathi language of the local concerned within seven days of issue of this letter, informing that the project has been accorded environmental clearance and copies of clearance letter are available with the Maharashtra Pollution Control Board and may also be seen at Website at http://ec.maharashtra.gov.in	next f	tisement will give in loca ew days.	al newspaper within
(xxii)	Project management should submit half yearly compliance reports in respect of the stipulated prior environment clearance terms and conditions in hard & soft copies to the MPCB & this department, on 1st June & 1st December of each calendar year.	We ensure that submission of six monthly compliance status reports of stipulated conditions		
(xxiii)	A copy of the clearance letter shall be sent by proponent to the concerned Municipal Corporation and the local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the Company by the proponent.	Projec	t proponent has consente	ed to condition.
(xxiv)	The proponent shall upload the status of compliance of the stipulated EC conditions, including results of monitored data on their website and shall update the same periodically. It	We compof e	et proponent has consente ensure that submissio liance status reports of s nvironmental clearance cored data to respecti	n of six monthly stipulated conditions with results of

	shall simultaneously be sent to the Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; SPM, RSPM. SO2, NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the project shall be monitored and displayed at a convenient location near the main gate of the company in the public domain.	regular basis. Monitoring of ambient air, stack, effluent and noise is being done through MoEF & NABL authorized laboratory and monitored data of criteria pollutants (SPM, RSPM, and SO2 & NOx) is displayed near company main gate and it is being updated regularly. Monitoring report copies are enclosed as Annexure-17.
(xxv)	The project proponent shall also submit six monthly reports on the status of compliance of the stipulated EC conditions including results of monitored data (both in hard copies as well as by e-mail) to the respective Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB.	Project proponent has consented to condition. We ensure that submission of six monthly compliance status reports of stipulated conditions of environmental clearance including results of monitored data of stack, ambient air, effluent & noise to respective authorities on regular basis
(xxvi)	The environmental statement for each financial year ending 31st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of EC conditions and shall also be sent to the respective Regional Offices of MoEF by e-mail.	Complied. Environmental statement report for financial year ending with March, 2019 is submitted; copy is enclosed as Annexure-18.
1.	The environmental clearance is being issued without prejudice to the action initiated under EP Act or any court case pending in the court of law and it does not mean that project proponent has not violated any environmental laws in the past and whatever decision under EP Act or of the Hon'ble court will be binding on the project proponent. Hence this clearance does not give immunity to the project proponent in the case filed against him, if any or action initiated under EP Act.	Project proponent has consented to condition.
2.	In case of submission of false document and non-compliance of stipulated conditions, Authority/ Environment Department will revoke or suspend the Environment clearance without any intimation and initiate appropriate legal action under Environmental Protection Act, 1986.	Project proponent has consented to condition.

3.	The Environment department reserves the right to add any stringent condition or to revoke the clearance if conditions stipulated are not implemented to the satisfaction of the department or for that matter, for any other administrative reason.	Project proponent has consented to condition.
4.	Validity of Environment Clearance: The environmental clearance accorded shall be valid as per EIA Notification, 2006, and amendments by MoEF & CC Notification dated 29th April, 2015.	Project proponent has consented to condition. Company has obtained Consent to operate from MPCB and industry is in operation phase.
5.	In case of any deviation or alteration in the project proposed from those submitted to this department for clearance, a fresh reference should be made to the department to assess the adequacy of the condition(s) imposed and to incorporate additional environmental protection measures required, if any.	Project proponent has consented to condition.
6.	The above stipulations would be enforced among others under the Water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 and rules there under, Hazardous Wastes (Management and Handling) Rules, 1989 and its amendments, the public Liability Insurance Act, 1991 and its amendments.	Project proponent has consented to condition.

STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY

Environment department, Room No. 217, 2nd floor, Mantralaya, Annexe, Mumbai- 400 032. Date:April 26, 2018

То

Mr. Shrikant K. Kulkarni.

at Plot E-18, 19, 20 & C-61(Part), MIDC Mahad, Mahad

Subject: Environment Clearance for Akzo Nobel India Limited

Sir,

This has reference to your communication on the above mentioned subject. The proposal was considered as per the EIA Notification - 2006, by the State Level Expert Appraisal Committee-I, Maharashtra in its 143rd meeting and recommend the project for prior environmental clearance to SEIAA. Information submitted by you has been considered by State Level Environment Impact Assessment Authority in its 115th meetings.

2. It is noted that the proposal is considered by SEAC-I under screening category schedule 5(f) category 'B1' as per EIA Notification 2006.

Brief Information of the project submitted by you is as below:-

1.3					
1.Name of Project	Akzo Nobel India Limited				
2.Type of institution	Private				
	Mr. Shrikant K. Kulkarni.				
4.Name of Consultant	Sadekar Enviro Engineers Pvt. Ltd. QCI NABET Accredited Consultancy :Certificate no. NABET/EIA/1518/ RA 020				
5.Type of project	Not applicable. Brown field industrial project				
6.New project/expansion in existing project/modernization/diversification expansion in existing project expansion in existing project					
7.If expansion/diversification, whether environmental clearance has been obtained for existing project	no WHAT THE THE THE THE THE THE THE THE THE TH				
8.Location of the project	Plot E-18, 19, 20 & C-61(Part), MIDC Mahad, Mahad				
9.Taluka	Mahad				
10.Village	Khaire				
11.Area of the project	group gram panchyat Savane				
	not aplicable. industrial project				
12.IOD/IOA/Concession/Plan Approval Number	IOD/IOA/Concession/Plan Approval Number: Not aplicable. industrial project				
	Approved Built-up Area: 8345.7				
13.Note on the initiated work (If applicable)	no work is initiated				
14.LOI / NOC / IOD from MHADA/ Other approvals (If applicable)	not applicable. Plan will be submitted to MIDC, Mahad.				
15.Total Plot Area (sq. m.)	86478 sq. m.				
16.Deductions	Not applicable				
17.Net Plot area	Not applicable				
	FSI area (sq. m.): Not applicable				
18 (a).Proposed Built-up Area (FSI & Non-FSI)	Non FSI area (sq. m.): Not applicable				
	Total BUA area (sq. m.): Not applicable				
	Approved FSI area (sq. m.):				
10 (1) 4					
10 (h) Approved Duilt up area as per	Approved Non FSI area (sq. m.):				
18 (b).Approved Built up area as per DCR					

Shri Satish.M.Gavai (Member Secretary SEIAA)

20.Ground-coverage Percentage (%) (Note: Percentage of plot not open to sky)	Not applicable
21.Estimated cost of the project	240400000

Government of Maharashtra

22.Production Details								
Serial Number	Pro	oduct Existing		(MT/M) Proposed (MT/M)		Total (MT/M)		
1	Organic l (Pure)	Peroxides Total	99.78		185.18	284.96		
2	Refilling/ k Metal Alk	olending of tyls (Pure)	66.67 75.17 141.83			141.83		
3	Byproduc chloride s	t: Sodium 0 100 100			108			
		2	3.Tota	I Wate	r Requiremen	t		
		Source of v	vater	Not applica	Not applicable			
		Fresh wate	r (CMD):	Not applica	ble			
		Recycled w Flushing (rater - CMD):	Not applica	ble			
		Recycled w Gardening	ater - (CMD):	Not applica	ble			
		Swimming make up (pool Cum):	Not applica	ble	7		
Dry season	1:	Total Wate Requireme	r nt (CMD)	Not applica				
		Fire fightin Undergrou tank(CMD)	round water Not applicable					
		Fire fighting Overhead tank(CMD)	rhead water Not applicable					
		Excess trea	ted water	r Not applicable				
		Source of v	vater	Not applicable				
		Fresh wate	r (CMD):	Not applicable				
		Recycled w Flushing (rater - CMD):	Not applicable				
		Recycled w Gardening	ater - (CMD):	Not applicable				
		Swimming make up (pool Cum):	Not applicable				
Wet season:		Total Wate Requireme		Not applicable				
		Fire fighting Undergroutank(CMD)	nd water	Not applicable				
		Fire fighting Overhead value tank(CMD)	vater	Not applicable				
			ited water	er Not applicable				
Details of Swimming pool (If any) Not applicable		ble		agiiti	a			

		24	.Detail	s of Total	l water co	nsume	d			
Particula rs	Cons	sumption (CM	D)	I	Loss (CMD)		Eff	fluent (CMD)		
Water Require ment	Existing	Proposed	Total	Existing	Proposed	Total	Existing	Proposed	Total	
Domestic	5	5	10	1	1	2	4	4	8	
Industrial Process	235	235	470	5	5	10	230	230	460	
Cooling tower & thermopa ck	10	50	60	7	17	24	3	33	36	
Gardening	100	0	100	100	0	100	0	0	0	
Fresh water requireme nt	350	290	640	113	23	136	237	267	504	
		7	0	A SHOW W	190975		7			
		Level of the water table:	Ground	approx. 20 n	n below groun	d level	<u> </u>			
		Size and no (tank(s) and Quantity:	of RWH	1 RWH tank of 10,000 L will be provided						
			he RWH	appropriate location will be decided as per architectural drawing						
25.Rain V Harvestin	Water ng	Quantity of r pits:	echarge	no recharge pits are proposed						
(RWH)	5	Size of recha:	rge pits	NA	0	5				
		Budgetary al (Capital cost	location) :	10,00,000						
		Budgetary al (O & M cost)	location ;	25,000						
		Details of UC if any:	ST tanks	not aplicable						
				4())	(())}					
26 64		Natural wate drainage pat	er tern:		developed lar storm water.	nd . MIDC	drains are pr	ovided to each	n plot for	
26.Storm drainage	water	Quantity of s water:	10	0.03 cum/sec						
		Size of SWD:		0.6*1*1796 m						
		Sewage general Sewage in KLD:		generated	ing and after o	ــــــــــــــــــــــــــــــــــــــ	40)	
		STP technolo	00	sewage will	be treated in a	erobic tre	eatment of ET	P		
27.Sewage and	Capacity of S (CMD):		No STP. ETI	of 700 CMD	capacity is	provided for	effluent treat	ment		
Waste water		Location & a the STP:		No STP. ETI	P is provided					
		Budgetary al (Capital cost	<u>):</u>	proposed co	st for water tr	eatment- 1	Rs. 1,00,00,00	00		
		Budgetary al (O & M cost)	location :	Rs.12,00,000	0					

	28.Soli	d waste Management		
Waste generation in the Pre Construction	Waste generation:	in construction phase minor quantity construction waste will be generated.		
and Construction phase:	Disposal of the construction waste debris:	construction debris will be used for landfill inside the plot premise		
	Dry waste:	144 TPA scrap plastic and other non hazardous dry waste will be generated in operation phase		
	Wet waste:	Hazardous wet waste will be disposed to CHWTSDF or it will be sold to authorised re-processor.		
Waste generation in the operation	Hazardous waste:	HW will be disposed at CHWTSDF or it will be sold to MPCB authorised recycler.		
Phase:	Biomedical waste (If applicable):	if generated, it is disposed to authorised party		
	STP Sludge (Dry sludge):	No STP sludge. it is estimated that 14 TPA ETP sludge will be produced during operation phase. it will be disposed to CHWTSDF		
	Others if any:	3 Tallof		
	Dry waste:	total 144 MT/year scrap/ dry non hazardous waste will be generated will be sold to authorised recycler.		
	Wet waste:	Hazardous wet waste will be disposed to CHWTSDF or it will be sold to authorised re-processor.		
Mode of Disposal of waste:	Hazardous waste:	Hazardous wet waste will be disposed to CHWTSDF or it will be sold to authorised re-processor.		
or waste:	Biomedical waste (If applicable):	if generated, it is disposed to authorised party		
	STP Sludge (Dry sludge):	No STP sludge. it is estimated that 14 TPA dry ETP sludge will be produced during operation phase. it will be disposed to CHWTSDF		
	Others if any:	not applicable		
	Location(s):	additional 2002 sq. m. will be required for expansion of production activity as per plot layout.		
Area requirement:	Area for the storage of waste & other material:	TOTAL STATE OF THE		
	Area for machinery:	प्रस्य मुद्रा		
Budgetary allocation (Capital cost and	Capital cost:	0		
O&M cost):	O & M cost:	Rs. 3,00,000		

Government of Maharashtra

		29.Ef	fluent Charecter	estics			
Serial Number	Parameters	Unit	Inlet Effluent Charecterestics	Outlet Effluent Charecterestics	Effluent discharge standards (MPCB)		
1	pН			7.0	6.5-8.5		
2	SS	mg/L		<10	100		
3	BOD 3 days 27 deg. C	mg/L		37	100		
4	COD	mg/L		112	250		
5	oil and grease	mg/L		04	10		
6	TDS	mg/L		1537	2100		
7	Chlorides	mg/L		455	600		
8	sulphates	mg/L		95	1000		
9	% sodium	mg/L	MIM	623 (0.0623 %)	60%		
10	phenolic compound	mg/L	如())))([][]	0.3	5		
11	TAN	mg/L		1.0	50		
12	chromium (Cr+6)	mg/L	न्वववाधक	<0.1	0.1		
13	sulphides (as S)	mg/L	- 37	<0.5	2.0		
14	phosphates (as P)	mg/L	(-)	<0.5	5.0		
15	Bioassay Test	70	70	90 % survival of fish after first 96 hrs. in 100 % effluent.	90 % survival of fish after first 96 hrs. in 100 % effluent.		
Amount of e (CMD):	ffluent generation	after expan	sion 504 CMD	月三			
Capacity of	the ETP:	700 CMD					
Amount of trecycled:	reated effluent	0					
Amount of v	vater send to the CETP:	504 CMD					
Membershi	o of CETP (if require):	Member of CETP Mahad. membership no. : 112					
Note on ETP technology to be used		Effluent stream segregation will be done on the basis of TDS concentration. High TDS stream will be first treated in salt recovery system and recovered water will be treated in 2 stage ETP consisting primary and secondary treatment. An ETP having 700 CMD capacity consisting of primary treatment and Sequential Batch Reactor as secondary treatment is presently employed to treat the effluent. An additional SBR of 250 CMD capacity will be provided.					
Disposal of	the ETP sludge	To CHWTSI	OF or sell to MPCB autho	orised re-processor.			

Government of Maharashtra

		30.Ha	zardous	Waste D	etails		
Serial Number	Description	Cat	UOM	Existing	Proposed	Total	Method of Disposal
1	alkali residue	12.2	TPA	20		20	CHWTSDF
2	chemicals containing residue from decontamination	33.1	TPA	2.4	2.6	5.0	CHWTSDF
3	used/ spend oil	5.1	TPA	2.4	2.4	4.8	MPCB authorized recycler
4	spent solvent	20.2	TPA	12	12	24	CHWTSDF/ MPCB authorized recycler
5	discarded containers/ barrels / liners/ plastic bags/ PPE	33.3	nos.	120	120	240	CHWTSDF/ MPCB authorized recycler
6	chemical sludge from wastewater treatment	34.3	TPA	7.2	6.8	14	CHWTSDF/ MPCB authorized recycler
7	evaporation salt (NaCl)	37.2	TPA	1818	144	144	CHWTSDF/ MPCB authorized recycler
	4	31.St	acks em	ission D	etails	7	
Serial Number	Section & units		ed with ntity	Stack No.	Height from ground level (m)	Internal diameter (m)	Temp. of Exhaust Gases
1	DG set (500 KVA)	135 L/h	our HSD	5 61	10	0.15	265 C
2	Scrubber (Process stack)			2	16	0.5	59 C
3	Diesel engine stack-1	22 L/h	r HSD	3	6.5	0.1	199 C
4	Diesel engine stack-2	-01	r HSD	4	6	0.07	214 C
5	Boiler stack	J	y LDO/ FO	5	30	0.3	160
6	DG set (200 KVA)	A GCDA	nected		- A		
	5/	32.De	tails of I	uel to b	e used	12.	
Serial Number	Type of Fuel		Existing	HY,	Proposed	7	Total
1	HSD	2()	174 L/hr	9	0		174 L/hr
2	LDO/ FO		0		834 Kg/day		834 kg/day
Source of F	uel	local	vendors	NA			
Mode of Tra	ansportation of fuel to sit	e by ro	ad transport	ation			
			-4-6				ľ
			33.Eı	nergy			

Maharashtra

		-	ı		
		Source of power supply:	MSEDCL		
		During Construction Phase: (Demand Load)	1375 KW		
		DG set as Power back-up during construction phase	500 KVA		
Power		During Operation phase (Connected load):	1850 KW		
requires		During Operation phase (Demand load):	1850 KW		
		Transformer:	1000 KVA	_	
		DG set as Power back-up during operation phase:	yes. existing 500 k	VVA DG will be used.	
		Fuel used:	135 L/Hr HSD	The Cart	
		Details of high tension line passing through the plot if any:	Plot is in MIDC, Mahad. No high tension line is passing through		
			ng by non cor	enventional method:	
		54.Energy savi	ing by non-cor	iventional method.	
	26 Detail			& % of saving:	
Serial		7			
Number	Ŀ	nergy Conservation Mo	easures	Saving %	
1		Fi Fi	400		
	ı			ontrol Systems	
Source	1	Existing pollution contr	ol system	Proposed to be installed	
process emissions	1 alkali s	crubber of 25 Cum/hr cap	pacity is provided .	1 addtional alkali scrubber of 50 cum/hr capacity will be provided	
boiler emissions	_	resently no boiler is used		proposed FO/LDO run boiler will be provided stack as per CPCB guidelines.	
DG set emissions	DG set	is used in power cut only neight is provided as per o	. Adequate stack guidelines.	no additional DG set is proposed. existing controlling methods will be used	
sewage treatment	sewage	e is mixed with effluent ar sequencing batch reacto	nd it is treated in or of ETP	existing treatment method will be utilised.	
Diesel engine stacks		adequate stack height is	provided	no additional diesel engines are proposed. Existing controlling methods will be used	
process effluent treatment treatment A 700 CMD capacity ETP is use primary treatment and second sequencing batch reactors are en aerobic treatment of the effluent. I is dischared to CETP, Mal		lary treatment. oployed for better The treated effluent	effluent stream load segregation will be done on the basis of TDS load. high TDS effluent will be initially treated by a salt recovery system and salt is recovered from process effluent. the remaining low TDS process effluent is further treated in ETP and it will be discharged to CETP, Mahad. additional 250 CMD capacity SBR will be installed to provide higher retention time for secondary treatment which will ensures better effluent treatment.		
Noise pollution	genera	c enclosures, a housing is ating equipment. periodic ent is done to reduce nois	maintenance of	additioinal equipment will be provided with acoustic enclosures to control noise pollution	
Solid waste management	vendors.	azardous waste is sold to a Hazardous waste is dispo d to MPCB authorised dea category.	osed to CHWTSDF	The existing treatment methods will be continued for additional waste generated. Salt recovered from the salt recovery system will be sold as byproduct.	
Budgetary a (Capital co		Capital cost:	capital cost for add	ditional energy requirement is included in project	
Ö&M co		O & M cost:	Rs. 5,00,000 for pr	roposed energy requirement	
38.	Envir	onmental Mar	nagement p	olan Budgetary Allocation	

Shri Satish.M.Gavai (Member Secretary SEIAA)

	a)	Construction pha	se (with Break-u	p):
Serial Number	Attributes	Parameter	Total Cost p	er annum (Rs. In Lacs)
1	air pollution control	dust emission- construction of barriers, water sprinkling on emission sources, cement bags will be stored in closed area and handled appropriately., only PUC certified vehicles will be used for transportation of construction materials		2.00
2	water pollution control	the sewage will be treated in ETP. the waste water which will be generated from construction processes will be treated in existing ETP	10 HOZA	0.5
3	noise pollution control	noise generating operations will be carries out only in daytime. the housing/ barriers will be provided for equipment.	a diam	0.5
4	soil pollution control	land will be kept clean by proper housekeeping. The construction debris will be used for landfilling in the plant premise.		0.5
5	Occupational health	Workers will be provided PPEs. Safety training will be provided to workers. medical facility and assistance will be provided to workers in emergency.	मुद्रा असूरे	1.0
0.11	b) Operation Phas	e (with Break-up	
Serial Number	Component	Description	Capital cost Rs. In Lacs	Operational and Maintenance cost (Rs. in Lacs/yr)
1	Air Pollution Control	1 additional alkali scrubber of 50 cum/hr will be provided with appropriate stack height in the expansion phase. 3. The proposed FO/LDO run boiler will be provided stack as per CPCB norms.	ment ashti	1.2 1.2

			Effluent stream					1
2		Pollution ontrol	segregation will be done before treatment. High The effluent stream will treated in salt recovery system a condensate will be mixed with low The stream and it will treated in two stage ETP. Low TDS/CO stream will be treated in two stage ETP consisting of primal and secondary treatment. One additional SBR of 2 CMD capacity will provided for secondary treatment.	DS l be and be be be ge bb be ted barry	1,00	7	12	
3		Pollution ontrol	Along with existing control measures acoustic enclosure will be provided as better equipmen maintenance will light done for effective noise pollution controls	s, es nd t be	Leas Leas		0.5	
4	Monit	ronment oring and agement	periodic monitoring will be done inside plant including ambient air monitoring, work place monitoring source emission monitoring.	the k	5	3年	12	
5	Occupat	ional Health	Periodic safety training, health checkup of employ Medical facilities provided to employees.	ees	F1 0245		0.5	
6	Gre	en Belt	the existing green l will be maintaine properly	oelt d	MIN		3	
7		d Waste agement	Solid hazardous wa will be disposed a CHWTSDF or it will sold to MPCB authorized recycle Non hazardous wa will be disposed through MPCB authorized dealer The salt which is recovered from hi TDS effluent will be sold as byproductive.	rs. ste	ner Ish	nt o tra	3	
8	Water c	onservation	RWH tank will be constructed for collection and use roof top rain wate	of	10		0.25	
39.S	torage	e of ch	emicals (infl	amal stand	ble/explo	osive/haz	zardou	s/toxic
Descri		Status	Location	Storag Capacit in MT	Maximum Quantity of Storage	Consumption / Month in MT	Source of Supply	Means of transportation

		1	1	1			
2-Ethyl hexyl chloroformate	Liquid	Drums	30	30	35	Local	road
Pivaloyl chloride	Liquid	Drums	8	8	10	Local	road
Benzoyl chloride	Liquid	Drums	30	30	13.7	Local	road
Isopropyl chloroformate	Liquid	Drums	10	10	1.5	Imported	Sea
Isododecane	Liquid	Drums	15	15	27	Imported	Sea
RAV 7AT	Liquid	Drums	25	25	5	Imported	Sea
Tert. butyhydroperoxide 70 %	Liquid	Drums	45	45	93	Imported	Sea
Hydrogen peroxide 70 %	Liquid	Tank	28	28	32.2	Local	road
Acetic acid	Liquid	Drums	2	2	1.4	Local	road
Sulphuric acid	Liquid	Drums	3	3	9.3	Local	road
Sodium hydroxide (30%)	Liquid	Tank	45	45	198	Local	road
Potasium hydroxide	Solid	Drums	19387	3	2.2	Local	road
2-EHCL	Liquid	Drums	16	16	19	Local	road
Neo deconoyl chloride	Liquid	Drums	7.5	7.5	4.5	Local	road
Methanol	Liquid	Drums	12	12	30.3	Local	road
1,1,3,3 tetra methyl butyl Hydroperoxide	Liquid	Cans	(12)	12	4.5	Imported	Sea
Methyl ethyl ketone	Liquid	Drums	3 (3	5.8	Local	road
Alcotex	Liquid	Drums	4	_ 4	1	Imported	Sea
Toluene	Liquid	Drums	14.5	14.5	30.3	Local	road
Dequest 2060 S	Liquid	Drums	1.5	1.5	0.7	Imported	Sea
Isobutyryl Chloride	Liquid	Drums	40	40	93.3	Local	road
Acetyl acetone	Liquid	Drums	7	7	1,1	Imported	Sea
spirdane D60	Liquid	Drums	45	45	29.2	Imported	Sea
HCl 30%	Liquid	Tank	20	20	41	Local	Road
Isononanoyl Chloride	Liquid	Drums	16	16	16.3	Imported	Sea
Cyclohexanone	Liquid	Drums	2	2	<u> </u>	Imported	Sea
Isononanoic Acid	Liquid	Drums	1	1	0.4	Imported	Sea
TBA	Liquid	Drums	6	6	2.1	Imported	Sea
Diisopropanol Benzene	Liquid	Drums	8	8	8.3	Imported	Sea
Sodium Perchlorate	Liquid	Drums	4	4	4.2	Local	Road
DHP	Liquid	Drums	5	5	4.2	Imported	Sea
Isopar H	Liquid	Drums	24	24	27.7	Imported	Sea

Maharashtra

CRZ/ RRZ clearance obtain, if any:	not applicable
Distance from Protected Areas / Critically Polluted areas / Eco-sensitive areas/ inter-State boundaries	Scattered patches of Reserve Forest exist at an aerial distance of more than 5 km from the project site.
Category as per schedule of EIA Notification sheet	schedule 5(f) category 'B1'
Court cases pending if any	no
Other Relevant Informations	
Have you previously submitted Application online on MOEF Website.	Yes
Date of online submission	07-04-2017

3. The proposal has been considered by SEIAA in its 115th meeting & decided to accord environmental clearance to the said project under the provisions of Environment Impact Assessment Notification, 2006 subject to implementation of the following terms and conditions:

Specific Conditions:

Specific Conditions.	
I	PP to take utmost care to mitigate the findings of the life cycle analysis to reduce global warming potential and increase the sustainability index.
General Conditions:	
I	(i)PP to achieve Zero Liquid Discharge; PP shall ensure that there is no increase in the effluent load to CETP.
П	73 TPH boiler should have stack height of 68m and flue gases shall be passed through an ESP of 99.9% efficiency before being led into the 68 m stack.
III	No additional land shall be used /acquired for any activity of the project without obtaining proper permission.
IV	PP to take utmost precaution for the health and safety of the people working in the unit as also for protecting the environment.
V	Proper Housekeeping programmers shall be implemented.
VI	In the event of the failure of any pollution control system adopted by the unit, the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieve.
VII	A stack of adequate height based on DG set capacity shall be provided for control and dispersion of pollutant from DG set. (If applicable).
VIII	A detailed scheme for rainwater harvesting shall be prepared and implemented to recharge ground water.
IX	Arrangement shall be made that effluent and storm water does not get mixed.
X	Periodic monitoring of ground water shall be undertaken and results analyzed to ascertain any change in the quality of water. Results shall be regularly submitted to the Maharashtra Pollution Control Board.
XI	Noise level shall be maintained as per standards. For people working in the high noise area, requisite personal protective equipment like earplugs etc. shall be provided.
XII	The overall noise levels in and around the plant are shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures, etc. on all sources of noise generation. The ambient noise levels shall confirm to the standards prescribed under Environment (Protection) Act, 1986 Rules, 1989.
XIII	Green belt shall be developed & maintained around the plant periphery. Green Belt Development shall be carried out considering CPCB guidelines including selection of plant species and in consultation with the local DFO/ Agriculture Dept.
XIV	Adequate safety measures shall be provided to limit the risk zone within the plant boundary, in case of an accident. Leak detection devices shall also be installed at strategic places for early detection and warning.
XV	Occupational health surveillance of the workers shall be done on a regular basis and record maintained as per Factories Act.
XVI	(The company shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling.
XVII	The project authorities must strictly comply with the rules and regulations with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Waste (Management and Handling) Rules, 2003 (amended). Authorization from the MPCB shall be obtained for collections/treatment/storage/disposal of hazardous wastes.
XVIII	Regular mock drills for the on-site emergency management plan shall be carried out. Implementation of changes / improvements required, if any, in the on-site management plan shall be ensured.

XIX	A separate environment management cell with qualified staff shall be set up for implementation of the stipulated environmental safeguards.
xx	Separate funds shall be allocated for implementation of environmental protection measures/EMP along with item-wise breaks-up. These cost shall be included as part of the project cost. The funds earmarked for the environment protection measures shall not be diverted for other purposes and year-wise expenditure should reported to the MPCB & this department
XXI	The project management shall advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the marathi language of the local concerned within seven days of issue of this letter, informing that the project has been accorded environmental clearance and copies of clearance letter are available with the Maharashtra Pollution Control Board and may also be seen at Website at http://ec.maharashtra.gov.in
XXII	Project management should submit half yearly compliance reports in respect of the stipulated prior environment clearance terms and conditions in hard & soft copies to the MPCB & this department, on 1st June & 1st December of each calendar year.
XXIII	A copy of the clearance letter shall be sent by proponent to the concerned Municipal Corporation and the local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the Company by the proponent.
XXIV	The proponent shall upload the status of compliance of the stipulated EC conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; SPM, RSPM. SO2, NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the project shall be monitored and displayed at a convenient location near the main gate of the company in the public domain.
XXV	The project proponent shall also submit six monthly reports on the status of compliance of the stipulated EC conditions including results of monitored data (both in hard copies as well as by e-mail) to the respective Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB.
XXVI	The environmental statement for each financial year ending 31st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of EC conditions and shall also be sent to the respective Regional Offices of MoEF by e-mail.

- 4. The environmental clearance is being issued without prejudice to the action initiated under EP Act or any court case pending in the court of law and it does not mean that project proponent has not violated any environmental laws in the past and whatever decision under EP Act or of the Hon'ble court will be binding on the project proponent. Hence this clearance does not give immunity to the project proponent in the case filed against him, if any or action initiated under EP Act.
- 5. In case of submission of false document and non-compliance of stipulated conditions, Authority/ Environment Department will revoke or suspend the Environment clearance without any intimation and initiate appropriate legal action under Environmental Protection Act, 1986.
- 6. The Environment department reserves the right to add any stringent condition or to revoke the clearance if conditions stipulated are not implemented to the satisfaction of the department or for that matter, for any other administrative reason.
- 7. Validity of Environment Clearance: The environmental clearance accorded shall be valid as per EIA Notification, 2006, and amendments by MoEF&CC Notification dated 29th April, 2015.
- 8. In case of any deviation or alteration in the project proposed from those submitted to this department for clearance, a fresh reference should be made to the department to assess the adequacy of the condition(s) imposed and to incorporate additional environmental protection measures required, if any.
- 9. The above stipulations would be enforced among others under the Water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 and rules there under, Hazardous Wastes (Management and Handling) Rules, 1989 and its amendments, the public Liability Insurance Act, 1991 and its amendments.
- 10. Any appeal against this Environment clearance shall lie with the National Green Tribunal (Western Zone Bench, Pune), New Administrative Building, 1stFloor, D-, Wing, Opposite Council Hall, Pune, if preferred, within 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.

Mans

Shri Satish.M.Gavai (Member Secretary SEIAA)

Copy to:

- 1. SHRI JOHNY JOSEPH, CHAIRMAN-SEIAA
- 2. SHRI UMAKANT DANGAT, CHAIRMAN-SEAC-I
- 3. SHRI M.M.ADTANI, CHAIRMAN-SEAC-II
- 4. SHRI ANIL .D. KALE. CHAIRMAN SEAC-III
- **5.** SECRETARY MOEF & CC
- **6.** IA- DIVISION MOEF & CC
- 7. MEMBER SECRETARY MAHARASHTRA POLLUTION CONTROL BOARD MUMBAI
- 8. REGIONAL OFFICE MOEF & CC NAGPUR
- 9. REGIONAL OFFICE MPCB RAIGAD
- 10. REGIONAL OFFICE MIDC RAIGAD
- 11. MAHARASHTRA STATE ELECTRICITY DISTRIBUTION CO. LTD
- 12. COLLECTOR OFFICE RAIGAD

Advernment of Maharashtra

भारत सरकार-कॉर्पोरेट कार्य मंत्रालय कम्पनी रजिस्ट्रार कार्यालय, पश्चिम बंगाल

नाम परिवर्तन के पश्चात नया निगमन प्रमाण-पत्र

कॉर्पोरेट पहचान संख्या : L24292WB1954PLC021516

मैसर्स ICI INDIA LTD.

के मामले में, मैं एतदद्वारा सत्यापित करता हूँ कि मैसर्स

ICI INDIA LTD.

जो मूल रूप में दिनांक बारह मार्च उन्नीस सौ चौवन को कम्पनी अधिनियम 1956 की धारा 3 के अन्तर्गत एक विधमान कम्पनी है और मैसर्स Indian Explosives Limited

के रूप में निगमित की गई थी, ने कम्पनी अधिनियम, 1956 की धारा 21 की शर्तों के अनुसार विधिवत आवश्यक विनिश्वय पारित करके तथा लिखित रूप में यह सूचित करके की उसे भारत का अनुमोदन, कम्पनी अधिनियम, 1956 की धारा 21 के साथ पठित, भारत सरकार, कम्पनी कार्य विभाग, नई दिल्ली की अधिसूचना सं.सा.का.नि. 507 (अ) दिनांक 24.6.1985 एस. आर.एन. A78356631 दिनांक 15/02/2010 के द्वारा प्राप्त हो गया है, उक्त कम्पनी का नाम आज परिवर्तित रूप में मैसर्स Akzo Nobel India Limited

हो गया है और यह प्रमाण–पत्र, कथित अधिनियम की धारा 23(1) के अनुसरण में जारी किया जाता है। यह प्रमाण–पत्र, मेरे हस्ताक्षर द्वारा कोलकाता में आज दिनांक पंद्रह फरवरी दो हजार दस को जारी किया गया है।

GOVERNMENT OF INDIA – MINISTRY OF CORPORATE AFFAIRS Registrar of Companies, West Bengal

Fresh Certificate of Incorporation Consequent upon Change of Name

Corporate Identity Number: L24292WB1954PLC021516

In the matter of M/s ICI INDIA LTD.

I hereby certify that ICI INDIA LTD. which was originally incorporated on Twelfth day of March Nineteen Hundred Fifty Four being an existing company as per Section 3 of the Companies Act, 1956 as Indian Explosives Limited having duly passed the necessary resolution in terms of Section 21 of the Companies Act, 1956 and the approval of the Central Government signified in writing having been accorded thereto under Section 21 of the Companies Act, 1956, read with Government of India, Department of Company Affairs, New Delhi, Notification No. G.S.R. 507 (E) dated 24/06/1985 vide SRN A78356631 dated 15/02/2010 the name of the said company is this day changed to **Akzo Nobel India Limited** and this Certificate is issued pursuant to Section 23(1) of the said Act.

Given under my hand at Kolkata this Fifteenth day of February Two Thousand Ten.

Seal of the Registrar of Companies, West Bengal

(Sd/-) SWADHIN BARUA उप कम्पनी रजिस्ट्रार / Deputy Registrar of Companies पश्चिम बंगाल West Bengal

कम्पनी रजिस्ट्रार के कार्यालय अभिलेख में उपलब्ध पत्राचार का पताः Mailing Address as per record available in Registrar of Companies office: Akzo Nobel India Limited GEETANJALI APARTMENT, 1ST FLOOR, 8-B, MIDDLETON STREET, KOLKATA – 700071, WEST BENGAL, INDIA

Office of the Registrar of Companies

PCNTDA Green Building,BLOCK A, 1st & 2nd Floor Near Akurdi Railway Station,Akurdi, Pune, Maharashtra, India, 411044

Certificate of Incorporation pursuant to change of name

[Pursuant to rule 29 of the Companies (Incorporation) Rules, 2014]

Corporate Identification Number (CIN): U24100PN2018PTC174373

I hereby certify that the name of the company has been changed from AKZO NOBEL CHEMICALS INDIA PRIVATE LIMITED to NOURYON CHEMICALS INDIA PRIVATE LIMITED with effect from the date of this certificate and that the company is limited by shares.

Company was originally incorporated with the name AKZO NOBEL CHEMICALS INDIA PRIVATE LIMITED.

Given under my hand at Pune this Twenty sixth day of June two thousand nineteen.

DS MINISTRY
OF CORPORATE
AFFAIRS

AFFAIRS

DS MINISTRY
OF CORPORATE
COMPOSITION OF COMPOSITION OF CORPORATE
COMPOSITION OF COMPOSITION O

CHEREDDY JAGANADH REDDY

Registrar of Companies RoC - Pune

Mailing Address as per record available in Registrar of Companies office:

NOURYON CHEMICALS INDIA PRIVATE LIMITED

Timeless Building, 2nd Floor, 209/1B/1A,, Range Hills, Pune, Pune, Maharashtra, India, 411020

MAHARASHTRA POLLUTION CONTROL BOARD

Tel: 24010706/24010437

Fax: 24023516

Website: http://mpcb.gov.in

Email: cac-cell@mpcb.gov.in

Kalpataru Point, 2nd and 4th floor, Opp. Cine Planet Cinema, Near Sion Circle, Sion (E), Mumbai-400022

RED/L.S.I

No:- Format1.0/CC/UAN No.000003495/- 200300030

Date: 12 03 2020

M/s. Nouryon Chemicals India Pvt. Ltd.

Plot No. E-18, 19, 20 and C-61 (Part), MIDC Mahad

Tal:- Mahad, Dist:- Raigad.

Sub:

Amendment in Consent to Operate in RED/LSI Category.

Ref:

- 1. Consent to Operate granted vide Format 1.0/BO/AST/MPCB-CONSENT-0000074098 /O-1908000496 dtd. 19.08.2019 which is valid upto 28.02.2021.
- Minutes of the 11th Consent Committee Meeting dtd. 13.01.2020.

Your application No.MPCB-CONSENT_AMMENDMENT-0000003495 Dated 13.09.2019

For: grant of Consent to Operate under Section 26 of the Water (Prevention & Control of Pollution) Act, 1974 & under Section 21 of the Air (Prevention & Control of Pollution) Act, 1981 and Authorization under Rule 6 of the Hazardous & Other Wastes (Management & Transboundary Movement) Rules 2016 is considered and the consent is hereby granted subject to the following terms and conditions and as detailed in the schedule I, II, III & IV annexed to this order:

- The consent to operate is granted for a period up to 28/02/2021
- The capital investment of the project is Rs.69.48 Crs. (As per C.A Certificate submitted by industry)
- Consent is valid for the manufacture of: 3.

Sr	Product	Maximum Quantity	иом
Pro	ducts:		TENEVER I
1	Organic Peroxide (Pure)	284.96	MT/M
2	Refilling/ Blending of Metal Alkyls (Pure)	141.83	MT/M
3	Soduim Chloride Salt (NaCl)	108	MT/M

Conditions under Water (P&CP), 1974 Act for discharge of effluent:

Sr No	Description	Permitted (in CMD)	Standards to	Disposal Path	
1.	Trade effluent	496.00	As per Schedule -I	CETP	
2.	Domestic effluent	8.00	As per Schedule - I		

Conditions under Air (P& CP) Act, 1981 for air emissions:

Sr No.	Stack No.	Description of stack / source	Number of Stack	Standards to be achieved
1	S-1	Boiler (11 TPH)	1	As per Schedule -II
2	S-2	Diesel Engine Hydrant	1	As per Schedule -II
3	S-3	Diesel Engine Sprinkler	1	As per Schedule -II
4	S-4	DG set (500 KVA)	1	As per Schedule -II
5	S-5	DG set (200 KVA)	1	As per Schedule -II
6	S-6	Process Stack (HCI)	1	As per Schedule -II
7	S-7	Process Stack	1	As per Schedule -II

6. Non-Hazardous Wastes:

Sr No	Type of Waste	Quantity	UoM	Treatment	Disposal
1	Plastic waste/Plastic Wrappers/ Scrap	144	MT/A	Sale	Sale to Authorized party

 Conditions under Hazardous & Other Wastes (M & T M) Rules 2016 for treatment and disposal of hazardous waste:

Sr No	Category No./ Type	Quantity	UoM	Treatment	Disposal
1	12.2 Alkali residue	-20	MT/A	Landfill	CHWTSDF
2	33.1 Chemical-containing residue from decontamination and d	5.0	MT/A	Landfill	CHWTSDF
3	5.1 Used /spent oil	4.8	MT/A	Recycle*	Sale to authorized recycler/CHWTSDF
4	20.2 Spent solvent	24	MT/A	Recycle*	Sale to authorized recycler/CHWTSDF
5	33.3 Discarded containers / barrels / liner	240	Nos./Y	Recycle*	Sale to authorized recycler/CHWTSDF
6	34.3 Chemical sludge from waste water treatment	14	MT/A	Landfill	CHWTSDF
7	37.3 Concentration or evaporation residues	144	MT/A	Recycle*	Sale to authorized recycler/CHWTSDF

^{*} Industry shall ensure disposal to the Actual user having permissions under Rule 9 of Hazardous and other Waste (M & TM) Rules, 2016

- 8 The Board reserves the right to review, amend, suspend, revoke this consent and the same shall be binding on the industry.
- 9 This consent should not be construed as exemption from obtaining necessary NOC/ permission from any other Government authorities.
- This consent is issued with overriding effect on earlier Consent to Operate granted by the Board Consent No. Format 1.0/BO/AST/MPCB-CONSENT-0000074098 /O-1908000496 dtd. 19.08.2019 which is valid upto 28.02.2021.

- 11 The applicant shall make an application for renewal of consent 60 days prior to date of expiry of the consent. (Operate/Renewal).
- 12 The applicant shall comply with the conditions of the Environmental Clearance granted by Government of Maharashtra dtd. 26.04.2018.
- 13 This consent is issued pursuant to the decision of the 11th Consent Committee Meeting held on 13.01.2020.

For and on behalf of the Maharashtra Pollution Control Board.

> (E. Ravendiran IAS), Member Secretary

Received Consent fee of -

Sr.No	Amount(Rs.)	Transaction/DR.No.	Date	Transaction Type
1	200000.00	5447655	28/02/2019	NEFT

Copy to:

- 1. Regional Officer, MPCB, Raigad and Sub-Regional Officer, MPCB, Mahad
- They are directed to ensure the compliance of the consent conditions.
- 2. Chief Accounts Officer, MPCB, Sion, Mumbai

SCHEDULE-I Terms & conditions for compliance of Water Pollution Control:

- A) As per your application, you have provided Effluent Treatment Plant (ETP) of designed capacity of 700.00 CMD for the treatment of 496 CMD effluent consisting of Primary (Collection tank, Neutralization tank, Equalization tank, Primary Clarifier/Primary Settling Tank), Secondary (Squential batch reactor)
 - B) The Applicant shall operate the effluent treatment plant (ETP) to treat the trade effluent so as to achieve the following standards prescribed by the Board or under EP Act, 1986 and Rules made there under from time to time, whichever is stringent:

Sr.No	Parameters	Limiting concentration not to exceed in mg/l, except for pH
	Comp	pulsory parameters
(1)	pH	5.5 to 9.0
(2)	Oil & Grease	10 mg/l
(3)	BOD (3 days 27°C)	100 mg/l
(4)	Total Suspended solids	100 mg/l
(5)	Total Dissolved solids	2100 mg/l
	Add	itional Parameters
(6)	COD	250 mg/l
(7)	Chlorides	600 mg/l
(8)	Sulphates	1000 mg/l
(9)	% Sodium	60 %
(10)	Phenolic Compound	5.0 mg/l
(11)	Total Ammonical Nitrogen	50 mg/l
(12)	Chromium (Cr +6)	0.10 mg/l
(13)	Sulphides (as S)	2.0 mg/l
(14)	Phosphates (as P)	5.0 mg/l
(15) Bioassy Test		90% survival of fish after first 96 hrs in 100% effluent

- C) The treated trade effluent shall be reuse/recycled up to maximum extent and remaining shall be sent to MMA- CETP for further treatment and disposal. There shall not be any discharge outside the factory premises
- D) The Industry shall ensure connectivity of online monitoring system to the MPCB server including separate energy meter for pollution control system.
- A] As per your application, primary treated sewage connected to Effluent Treatment Plant for further treatment & disposal.
 - B) Industry shall comply prescribed standards & disposal path as prescribed at Sr. No. 1 B & C of schedule I.

- 3. The Board reserves its rights to review plans, specifications or other data relating to plant setup for the treatment of waterworks for the purification there of & the system for the disposal of sewage or trade effluent or in connection with the grant of any consent conditions. The Applicant shall obtain prior consent of the Board to take steps to establish the unit or establish any treatment and disposal system or an extension or addition thereto.
- The industry shall ensure replacement of pollution control system or its parts after expiry of its expected life as defined by manufacturer so as to ensure the compliance of standards and safety of the operation thereof.
- The Applicant shall comply with the provisions of the Water (Prevention & Control of Pollution) Act, 1974 and as amended, by installing water meters and other provisions as contained in the said act:

Sr. No.	Purpose for water consumed	Water consumption quantity (CMD)
1.	Industrial Cooling, spraying in mine pits or boiler feed	60.00
2.	Domestic purpose	10.00
3.	Processing whereby water gets polluted & pollutants are easily biodegradable	470.00
4.	Processing whereby water gets polluted & pollutants are not easily biodegradable and are toxic	0.00
5.	Gardening	100.00

 The Applicant shall provide Specific Water Pollution control system as per the conditions of EP Act, 1986 and rule made there under from time to time/ Environmental Clearance/ CREP guidelines.

SCHEDULE-II Terms & conditions for compliance of Air Pollution Control:

 As per your application, you have provided the Air pollution control (APC) system and erected following stack (s) to observe the following fuel pattern:

Stack No.	Stack Attached To	APC System	Height in Mtrs.	Type of Fuel	Quantity & UoM	5%	50 ₂
S-1	Boiler (11 TPH)	Stack	30	LDO	834 Kg/Day	4.50	30.20
5-2	Diesel Engine Hydrant	Stack	6.0	HSD	18 Ltr/Hr	1.00	8.64
S-3	Diesel Engine Sprinkler	Stack	6.5	HSD	22 Ltr/Hr	1.00	10.56
S-4	DG set (500 KVA)	Acoustic Enclosure	3.5*	HSD	122 Ltr/Hr	1.00	58.56
S-5	D.G. Set (200 KVA)	Acoustic Enclosure	3.5*	HSD	100 Ltr/Hr	1.00	48.00
S-6	Process stack (HCI)	Scrubber	10	-	-	-	-
S-7	Process stack	Scrubber	10				

(*-Above roof level)

- The Applicant shall provide Specific Air Pollution control equipments as per the conditions of EP Act, 1986 and rule made there under from time to time/ Environmental Clearance / CREP guidelines.
- The applicant shall operate and maintain above mentioned air pollution control system, so as to achieve the level of pollutants to the following standards:

Total Particulate matter	Not to exceed	150 mg/Nm ³
Acid Mist	Not to exceed	35.0 mg/Nm3
NH3	Not to exceed	35 ppm

- The Applicant shall obtain necessary prior permission for providing additional control
 equipment with necessary specifications and operation thereof or alteration or
 replacement/alteration well before its life come to an end or erection of new pollution
 control equipment.
- The Board reserves its rights to vary all or any of the condition in the consent, if due to any technological improvement or otherwise such variation (including the change of any control equipment, other in whole or in part is necessary).

SCHEDULE-III Details of Bank Guarantees:

Sr. No.	Consent(C2E/C2O/C 2R)	Amt of BG Imposed	Submission Period	Purpose of BG	Compliance Period	Validity Date
1	Consent to Operate	5.0 Lakh	Exisitng	Towards O and M of PCS and towards compliance of consent condition	28.02.2021	30.06.2021

** The above Bank Guarantee(s) shall be submitted by the applicant in favour of Regional Officer at the respective Regional Office within 15 days of the date of issue of Consent. # Existing BG obtained for above purpose if any may be extended for period of validity as above.

BG Forfeiture History

Srno.	Consent (C2E/C2O/C2R)	Amount of BG imposed	Submission Period	Purpose of BG	Amount of BG Forfeiture	Reason of BG Forfeiture
			NA .			

BG Return details

Amount of BG Returned
1
V

SCHEDULE-IV General Conditions:

- The Energy source for lighting purpose shall preferably be LED based
- The PP shall harvest rainwater from roof tops of the buildings and storm water drains to recharge the ground water and utilize the same for different industrial applications within the plant
- 3. Conditions for D.G. Set
 - a) Noise from the D.G. Set should be controlled by providing an acoustic enclosure or by treating the room acoustically.
 - b) Industry should provide acoustic enclosure for control of noise. The acoustic enclosure/ acoustic treatment of the room should be designed for minimum 25 dB (A) insertion loss or for meeting the ambient noise standards, whichever is on higher side. A suitable exhaust muffler with insertion loss of 25 dB (A) shall also be provided. The measurement of insertion loss will be done at different points at 0.5 meters from acoustic enclosure/room and then average.
 - c) Industry should make efforts to bring down noise level due to DG set, outside industrial premises, within ambient noise requirements by proper sitting and control measures.
 - d) Installation of DG Set must be strictly in compliance with recommendations of DG Set manufacturer.
 - e) A proper routine and preventive maintenance procedure for DG set should be set and followed in consultation with the DG manufacturer which would help to prevent noise levels of DG set from deteriorating with use.
 - f) D.G. Set shall be operated only in case of power failure.
 - g) The applicant should not cause any nuisance in the surrounding area due to operation of D.G. Set.
 - h) The applicant shall comply with the notification of MoEFCC, India on Environment (Protection) second Amendment Rules vide GSR 371(E) dated 17.05.2002 and its amendments regarding noise limit for generator sets run with diesel.
- The applicant shall maintain good housekeeping.
- The non-hazardous solid waste arising in the factory premises, sweepings, etc. be disposed of scientifically so as not to cause any nuisance / pollution. The applicant shall take necessary permissions from civic authorities for disposal of solid waste.
- The applicant shall not change or alter the quantity, quality, the rate of discharge, temperature or the mode of the effluent/emissions or hazardous wastes or control equipments provided for without previous written permission of the Board. The industry will not carry out any activity, for which this consent has not been granted/without prior consent of the Board.
- The industry shall ensure that fugitive emissions from the activity are controlled so as to maintain clean and safe environment in and around the factory premises.
- The industry shall submit quarterly statement in respect of industries obligation towards consent and pollution control compliance's duly supported with documentary evidences (format can downloaded from MPCB official site).
- The industry shall submit official e-mail address and any change will be duly informed to the MPCB.
- The industry shall achieve the National Ambient Air Quality standards prescribed vide Government of India, Notification No. B-29016/20/90/PCI-L dated. 18.11.2009 as amended.
- 11. The Board reserves its rights to review plans, specifications or other data relating to plant setup for the treatment of waterworks for the purification thereof & the system for the disposal of sewage or trade effluent or in connection with the grant of any consent conditions. The Applicant shall obtain prior consent of the Board to take steps to establish the unit or establish any treatment and disposal system or an extension or addition thereto.

- The industry shall ensure replacement of pollution control system or its parts after expiry of its expected life as defined by manufacturer so as to ensure the compliance of standards and safety of the operation thereof.
- 13. The PP shall provide personal protection equipment as per norms of Factory Act
- Industry should monitor effluent quality, stack emissions and ambient air quality monthly/quarterly.
- 15. Whenever due to any accident or other unforeseen act or even, such emissions occur or is apprehended to occur in excess of standards laid down, such information shall be forthwith Reported to Board, concerned Police Station, office of Directorate of Health Services, Department of Explosives, Inspectorate of Factories and Local Body. In case of failure of pollution control equipments, the production process connected to it shall be stopped.
- 16. The applicant shall provide an alternate electric power source sufficient to operate all pollution control facilities installed to maintain compliance with the terms and conditions of the consent. In the absence, the applicant shall stop, reduce or otherwise, control production to abide by terms and conditions of this consent.
- 17. The industry shall recycle/reprocess/reuse/recover Hazardous Waste as per the provision contain in the Hazardous and Other Wastes (M & TM) Rules 2016, which can be recycled /processed /reused /recovered and only waste which has to be incinerated shall go to incineration and waste which can be used for land filling and cannot be recycled/reprocessed etc. should go for that purpose, in order to reduce load on incineration and landfill site/environment.
- An inspection book shall be opened and made available to the Board's officers during their visit to the applicant.
- Industry shall strictly comply with the Water (P&CP) Act, 1974, Air (P&CP) Act, 1981 and Environmental Protection Act, 1986 and industry specific standard under EP Rules 1986 which are available on MPCB website (www.mpcb.gov.in).
- 20. Separate drainage system shall be provided for collection of trade and sewage effluents. Terminal manholes shall be provided at the end of the collection system with arrangement for measuring the flow. No effluent shall be admitted in the pipes/sewers downstream of the terminal manholes. No effluent shall find its way other than in designed and provided collection system.
- Neither storm water nor discharge from other premises shall be allowed to mix with the effluents from the factory.
- 22. The industry should not cause any nuisance in surrounding area.
- 23. The industry shall take adequate measures for control of noise levels from its own sources within the premises so as to maintain ambient air quality standard in respect of noise to less than 75 dB (A) during day time and 70 dB (A) during night time. Day time is reckoned in between 6 a.m. and 10 p.m. and night time is reckoned between 10 p.m. and 6 a.m.
- 24. The industry shall create the Environmental Cell by appointing an Environmental Engineer, Chemist and Agriculture expert for looking after day to day activities related to Environment and irrigation field where treated effluent is used for irrigation.
- 25. The applicant shall provide ports in the chimney/(s) and facilities such as ladder, platform etc. for monitoring the air emissions and the same shall be open for inspection to/and for use of the Board's Staff. The chimney(s) vents attached to various sources of emission shall be designated by numbers such as S1, S-2, etc. and these shall be painted/ displayed to facilitate identification.

- The industry should comply with the Hazardous and Other Wastes (M & TM) Rules, 2016 and submit the Annual Returns as per Rule 6(5) & 20(2) of Hazardous and Other Wastes (M & TM) Rules, 2016 for the preceding year April to March in Form-IV by 30th June of every year.
- The applicant shall install a separate meter showing the consumption of energy for operation of domestic and industrial effluent treatment plants and air pollution control system. A register showing consumption of chemicals used for treatment shall be maintained.
- 28. The applicant shall bring minimum 33% of the available open land under green coverage/ plantation. The applicant shall submit a yearly statement by 30th September every year on available open plot area, number of trees surviving as on 31st March of the year and number of trees planted by September end.
- 29. The Board reserves its rights to review plans, specifications or other data relating to plant setup for the treatment of waterworks for the purification thereof & the system for the disposal of sewage or trade effluent or in connection with the grant of any consent conditions.
- The firm shall submit to this office, the 30th day of September every year, the Environment Statement Report for the financial year ending 31st March in the prescribed FORM-V as per the provisions of Rule 14 of the Environment (Protection) (second Amendment) Rules, 1992.
- The Applicant shall obtain necessary prior permission for providing additional control equipment with necessary specifications and operation thereof or alteration or replacement/alteration well before its life come to an end or erection of new pollution control equipment.
- The Board reserves its rights to vary all or any of the condition in the consent, if due to any technological improvement or otherwise such variation (including the change of any control equipment, other in whole or in part is necessary).
- 33. The applicant shall provide facility for collection of environmental samples and samples of trade and sewage effluents, air emissions and hazardous waste to the Board staff at the terminal or designated points and shall pay to the Board for the services rendered in this behalf.

List of raw material:

Name	Total in
1,1,3,3 tetra methyl butyl	MT/year
Hydroperoxide	
2-EHCL	226
2-Ethyl hexyl chloroformate	420
Acetic acid	17.3
Acetyl acetone	13
Alcotex	12
Benzoyl chloride	164
Berol	2.4
Calcium carbonate	150
Cyclohexanone	12
Dequest 2060 S	8.1
DHP	50
Diethylene Glycol	31.4
Di-isopropyl Benzene	100
Dimethylphthalate	70.7
Ethapol	91
HCL 30% solution	490
Hydrogen peroxide 70 % solution	386.5
Isobutaryl Chloride	1120
Isododecane	320
Isononanoic Acid	5
Isononanoyl Chloride	195
Isopar H	332
Isopropyl chloroformate	18
Magnesium sulphate	26
Methanol	363.2
Methyl ethyl ketone	69.2
Neo deconoyl chloride	54
Pivaloyl chloride	116
Potasium hydroxide	26.5

RAV 7AT	60
Silica	45
Sodium bicarbonate	6
Sodium Carbonate solid	1
Sodium chloride	535.9
Sodium hydroxide (30%) solution	2375.3
Sodium meta bisulphite	35.1
Sodium Perchlorate	50
Sodium sulphate	2.4
Spirdane D60	350
Sulphuric acid	112
TBA	25
Tert.butyl hydroperoxide 70 % solution	1116.4
Toluene	364
Total	10021.4
Water (as solvent base)	200 CMD

MAHARASHTRA INDUSTRIAL DEVELOPMENT CORPORATION (A Govt. Of Maharashtra Undertaking)

To,

No.DE(M)/E-18/ B 14865 Office of the Deputy Engineer. MIDC, Mahad Sub-Division, Mahad Dated: 30.03.2017

M/s. Akzo Noba Chemicals India Limited, Plot No. E-18, MIDC, Mahad Industrial Area. Mahad

Sub:

Change of companies name & sanctioned of 15 min dia water supply connection of plot No. E 18 in

Mahad Indl. Area.

Ref: 1. Your letter No. Nil dt. 09.02.2017

> This office letter No. DE(M)/A79990 dt. 03.03.2017 2.

Dear Sir,

Since you have paid water supply deposit Rs. 26 393 8 initial receipt No. 09C17_000689 & 09C17_000690 dt charges Ra. 575/-vide 29.03.2017 & accepted all terms & conditions under Water Supply Agreement, 15 mm diameter size of water supply connection is hereby sanctioned, taking in to consideration 11.50m3 / day requirement. The said of water supply will be Rs. 25.50 per Cum, till the BCC is obtained subjected to revision of water rates by MIDC from time to time.

A copy of water supply agreement is enclosed here with for your reference and further needful please.

Thanking you.

Your's faith!

Deputy Engineer

MIDC, Mahad Sub Division, Mahad

Copy submitted to the Executive Engineer, MIDC, Civil Division, Mahad for favour of information.

GSTIN 27AAACM3560C1ZV Original for receipent Maharashtra Industrial Development Corporation (A Government of Maharashtra Undertaking) State 27-Maharashtra Duplicate for Supplier Issued Subject to MIDC's water Supply Regulation 19 Water Bill Provisional Bill No :: S119002074471 CustGSTIn: 27AAQCA4386A1ZL Mahad Month / Year :: February 2020 Issued Date :: 13-03-2020 Consumer No:- DV009/164MHD/301 Deposit Amt. AKZO NOBEL CHEMICAL Meter Size: 15 Consumer Type: 1C1 INDI PVT, LTD Min. Qty/ Day: 0.50 Plot / Shed Area: 20.328.00 26,393.00 Plot / Shed No E-18 Min. Qty / Month: 15.00 PLOT NO. E-18 RAIGAD Add Sec. Dep. Block No: Sanction Qty / day. MAHAD IND. AREA Meter Status: Working Zone: 10 Stand Chg: Cap. Contribution: State: 27-Maharashtra CETP Dep Bod: No CarpetArea: 0.00 Office Order : dt: End Dt: CETP: Yes Office Order: dtd: SSI: N ETP:Y CETP:Y MPCB:Y Env: Yes Builtup Area: 20,328.00 Due Date Amount Due Before Due Date Amount Due After Due # Current Charges ## Previous Date ▭ + 44,406.00 44,413.00 27-03-2020 0.00 44,406.00 Water Qty. Cub. Meter Remarks (If Any) Previous Current Meter No / Size Date Reading Date Reading 164MHD~7 1341 31-01-2020 1352 29-02-2020 11 31253 Minimum Qty Charged/month 15.00

15	*		İ		<u> </u>	
January	2020 28.00	December	2019 12.00	November 201	9 39.00 Fet	огиагу 2019 41.00
			REG	ULAR	ļ	
Charge	es Code	CHAR	GES	C	PC	
Orlang.		CURRENT#	PREVIOUS ##	CURRENT#	PREVIOUS ##	
Water Charg	nes i	383.00	0,00	5.00	0.00	
Service Cha	_	5,082.00	0.00	0.00	0.00	998599 GST @ 18 00% (Pt = 20 328 00 * Rt = 3 00 * FSt = 1 00) / 12
SGST - Serv		457.00	00.0	0.00	0.00	
CGST - Sen	-	457,00	0.00	0.00	0.00	
Fire Charge:	_	1,863.00	0.00	0.00	0.00	999126 GST @ 18 00% (20 328 00 1 10 /12
SGST - Fire		168.00	0.00	0.00	0.00	999128 SGST @9 00%
CGST - Fire	_	168.00	0.00	0.00	0.00	999128 CGST @9 00%
Drainage Ch	-	113,00	0.00	2,00	0.00	999490 GST @ 18 00% Wir = 15 00 * Rt = 7 50
SGST - Drai	-	10.00	0.00	0.00	0.00	999490 SGST @9 00%
CGST - Dra	_	10.00	0.00	0.00	0.00	999490 CGST @9 00%
CETP Char	-	35,695.00	0.00	0.00	0.00	999433 GST @ 12,00% Security Deposite = 0,00
TOTAL		44,406.00	0.00	7.00	0.00	, , ,

LAST PAYMENT DETAILS Rcpt. No Date 20MAH00003018, 26-02-2020, 45,426.00	Please Contact Us Twitter @Midc_India FaceBook - midcindia
	DEPUTY ENGINEER M.I.D.C.
Rupees : Forty Four Thousand Four Hundred and Six Only	Cheque / 00/ PO should be drawn in favour of Executive Engineer MIDC, Mahad Civil Payment Timings 10:30:00 am to 01:30:00 pm. Closed on Saturo
For Online Payment visit MIDC web site www.midcindia.org and use Consumer	Sundays and Public Holidays. For any queries, contact Deputy Engineer, MIDC, Phone No. GST No.

^{*} Please submit your official GST No., email and phone no while paying this bill at receipt counter.

* CETP Treatment charges collected on behalf of CETP Association.

^{*} All Online, NEFT/RTGS payments shall be made through MIDC's Web Site only.

Maharashtra Industrial Development Corporation (A Government of Maharashtra Undertaking)

GSTIN: 27AAACM3560C1ZV State: 27-Maharashtra

Original for receipent **Duplicate for Supplier**

(Issued Subject to MIDC's water Supply Regulation 1973Water Bill _ Provisional

Mahad Issued Date :: 13-03-2020

Bill No :: \$119002073578 Month / Year :: February, 2020

M/S. AKZO NOBEL CHEMICALS INDIA PVT LTD.

CustGSTIn: 27AAQCA4386A1ZL

Consumer No:- DV009/361MHD/301

Consumer Type: 1C1 E - 19 & 20, E BlockMIDC

Plot / Shed Area: 66.150.00 Plot / Shed No: E - 19 & 20 Block No: E

Meter Size: 80 Min. Qty/ Day. 40.00 Min. Qty / Month: Sanction Qty / day.

Deposit Amt. 668,815.00

MAHAD INDL. ARE State: 27-Maharashtra

Zone: 10 Cap. Contribution:

=

Meter Status: Working Stand Chg

CETP:Y MPCB:Y

Add. Sec. Dep.

Bcc: Yes Office Order : dt: 30-12-2014 End Dt:

CETP: Yes Office Order: dtd: Env: Yes Builtup Area: 4,465.00

SSI: N

CarpetArea: 0.00 CETP Dep

Previous Balance

0.00

Current Charges 405,235.00

Amount Due Before **Due Date** 405,235.00

ETP:Y

Amount Due After Due Date 408,061.00

Oue Date 27-03-2020

Meter No / Size	Previous		Current		Previous Current Water C		Water Qty. Cub. Mete	Remarks (If	Anv)	
326	Reading	Date	Reading	Date		,	**			
361MHD ~ 800446	768821	31-01-2020	776555	29-02-2020	7734					
80				}						
January	2020 10,410.0	0 November	2019 11,19	4.00 October	2019 6,553.00	February	2019	9,312.00		

		REGU	ILAR		
Charges Code	CHAR	GES	D	PC	
	CURRENT#	PREVIOUS ##	CURRENT #	PREVIOUS ##	P
Water Charges_L	131,478.00	0.00	1,762.00	0.00	2201 GST @ 0 00% 17 80 7 734 00 1
Service Charges	16,538.00	0.00	0.00	0.00	998599 GST @ 18,00% (PII = 66 150 00 * RI = 3 00 * FSI = 1 00) / 12
SGST - Service Charge	1,488.00	0.00	0.00	0.00	
CGST - Service Charge	1,488.00	0.00	0.00	0.00	998599 CGST @9.00%
Fire Charges	6,064.00	0.00	0.00	0.00	999128 GST @ 18.00% (66,150 00 * 1.10/12
SGST - Fire Charge	546.00	0.00	0.00	0.00	999126 SGST @9.00%
CGST - Fire Charge	546.00	0.00	0.00	0.00	999126 CGST @9.00%
Drainage Charges	58,005.00	0.00	777.00	0.00	999490 GST @ 18.00% Wkr = 7 734 00 * Rt =
SGST - Drainage	5,220.00	0.00	70.00	0.00	999490 SGST @9.00%
CGST - Drainage	5,220.00	0.00	70.00	0.00	999490 CGST @9.00%
Environment Charges	10,964.00	0.00	147.00	0.00	GST @ 0.00% (\vir = 7.734 00 * Rt = 2.20) + (Area = 4,465 00 * Area Rt = 1.10) * Rt= 0.50
CETP Charges	167,678.00	0.00	0.00	0.00	
TOTAL	405,235.00	0.00	2,826.00	0.00	}

LAST PAYMENT DETAILS Rcpt. No Date 20MAH00003094, 04-03-2020, 826.00	Please Contact Us Twitter @Midc_India FaceBook - midcindia
	DEPUTY ENGINEER M.I.D.C.
Rupees: Four Lacs Five Thousand Two Hundred and Thirty F	Cheque / DD/ PO should be drawn in favour of Executive Engineer MIDC Mahad Civil Payment Timings 10:30:00 am to 01:30:00 pm. Closed on Saturi
For Online Payment visit MIDC web site www.midcindia.org and u No. DV009/361MHD/301	Se Consumer Sundays and Public Holidays For any quaries, contact Deputy Engineer, MIOC Phone No. GST No.

^{*} Please submit your official GST No., email and phone no while paying this bill at receipt counter.

* CETP Treatment charges collected on behalf of CETP Association.

^{*} All Online, NEFT/RTGS payments shall be made through MIDC's Web Site only.

EXECUTIVE COMMITEE

Chairman Emeritus
Mr. Suresh S. Bhonsle
suresh.bhonsle@gmail.com
Mob. 9819830246

Chairman

Mr. Sambhaji B. Pathare

M/s. Privi Organics Ltd. sbpathare@privi.co.in Mob. 9167219216

Vice Chairman

Mr. Ashok N. Talathi

M/s. Mars-Chemie Pvt. Ltd. ant_64@rediffmail.com Mob. 9423824189

Secretary

Mr. Jayaprakash A. Shetty

M/s. Key Organics Pvt. Ltd. jayaprakash@indoaminesltd.com Mob. 9011015956

Treasurer

Mr. Rajendra A. Sheth

M/s. Hikal Ltd. rajendra_sheth@hikal.com Mob. 9764442468

EXECUTIVE MEMBERS

Mr. Manoj K. Sharma

M/s. Sandoz Pvt. Ltd. manoj.sharma@sandoz.com 02145-661300

Mr. Sudhir S. Lokhande

M/s. Sudarshan Chemical Ind. Ltd. sslokhande@sudarshan.com 02145-660288

Mr. Santosh E. Chavan

Raireshwar Organic Chem. Pvt. Ltd. sechavan@rediffmail.com Mob. 9921778484

Mrs. Kalyani K. Guduru

Nise Pharma Chem. Pvt. Ltd. nisechem@gmail.com Mob. 9422096034

MMA CETP CO-OPERATIVE SOCIETY LTD.

P-43, MIDC Industrial Area, Mahad, Dist. Raigad Pin 402 309 (Maharashtra)

■ Tel. (02145) 232285 ■ email:mma.cetp@mmamahad.com

AN-ISO CERTIFIED COMPANY

MMACETP/COR/2018-19/251

Date: 14/03/2019

To, The Unit head, M/S. AkzoNobel Speciality Chemicals Ltd. Plot No- E-18.19 &20, C-61(Part) MIDC Area. Mahad.

Reference: - Your letter dated 05th March 2019.

Subject: - NOC to connect effluent discharge to CETP from plot no. E-18.19 &20, C-61(Part)

Dear Sir,

Please note that your previous MPCB consented discharge is 648 CMD. As per your request, you are decreasing the discharge limited to 504 CMD. With reference to above subject and your letter dated 05th March 2019, we have No objection for the connection of your treated effluent 504 CMD from plot no. E-18.19 &20, C-61(Part) to CETP with following conditions.

Condition No.1: AkzoNobel Speciality Chemicals Ltd. should provide two days holding facility to hold the treated effluent in their premises in case of any deviation or any maintenance work.

Condition No.2: AkzoNobel Speciality Chemicals Ltd. should meet the consent conditions and discharge norms as prescribed by MPCB.

For MMA CETP Co-Operative Society LTD.

Chairman

(S.B. Pathare)

SADEKAR ENVIRO ENGINEERS PVT. LTD.

Plot No. A-95, Road No. 16, Kisan Nagar Road, M.I.D.C. Wagle Industrial Area, Thane - 400 604, Maharashtra State, India. © . (91-22) 2583 3321 / 2583 3322 / 2583 3323 / 2583 3324 • E-mail prs@sadekarenviro.com / psadekar5@gmail.com

SAVE WATER SAVE LIFE

Gazetted By Ministry of Environment, Forest & Climate Change, Govt Of India, S. O. 857 (E), Valid upto 25.02.2023 * QCI-NASET Accredited EIA Consultancy Lab. accredited by NABL, Valid up to 26.03.2020 ★ Certified by ISO 9001;2015 & BS OHSAS 18001 : 2007

	ANALY	SIS TEST REPO	RT FOR WATER SAMPLE		
			Report Date	30/12/2019	
Name of Client	M/s. Nouryon C	hemicais India	Pvt Ltd.		
Address of Client	Plot No. E-18/19	/20, 61 (Part),	MIDC Mahad, Dist-Raigad. 4	02302, Maharashtra.	
Order/Reference	As Per Dated – 1	3/12/2019			
Sample Collection Date	13/12/2019		Sample Receipt Date	13/12/2019	
Analysis Started On	14/12/2019		Analysis Completed On	30/12/2019	
Test Report No.	SEETL/W/12/19/	/068			
Environmental Condition Of Lab	Temp ⁰ C	26.2	Humidity %	53	
Sampling Point	Amba Garden		·		
Sample Details	Ground Water				
Sample Container	PVC Can		Sample Quantity	2000 ml	
Sample Collected By	SEETL Represent	tative			

Chemical Parameters

Sr. No.	Parameter	Result	Unit	IS desirable Limit (As per IS 10500) 2012	Method
1.	pH	6.882	-	6.5 - 8.5	APHA 4500 - H
2.	Color	20	Hazen	5.0	APHA 2120-B
3.	Odour	Agreeable	Agreeable	Agreeable	IS 3025 (Part 5) : 1983 (Reaffirmed 2002)
4.	Taste	Not Agreeable	Agreeable	Agreeable	IS 3025 (Part 7 & 8) : 1984 (Reaffirmed 2002)
5.	Turbidity	150	NTU	1.00	APHA 2130 - B
6.	TDS	590	mg/lit	500	APHA 2540 - C
7.	Ammonia	<0.1	mg/lit	0.5	iS 3025(Part 34):1988 (Reaffirmed 2014)
8.	Anionic Detergent	<0.08	mg/lit	0.2	APHA 5540 C
9.	Chlorides as Cl	104.91	mg/lit	250.00	APHA 4500 Cl* - B
10.	Fluorides as F	0.08	mg/lit	1.0	APHA 4500 F D
11.	Nitrate as NO ₃	4.02	mg/lit	45.00	APHA 4500 NO₃-B
12.	Phenolic Compound	<0.001	mg/lit	0.001	APHA 5530 B-C
13.	Total Hardness	345	mg/lit	200.00	APHA 2340 - C
14.	Sulphate as SO ₄	70.92	mg/lit	200.00	APHA 4500 SO ₄ - E
15.	Sulfide	<0.05	mg/lit	0.05	APHA 4500 - Sz-F

Checked By Nilesh Naik

Authorized Signatory Priti Thombare

Page 1 Of 2

Visited by:

Value

Value

BRANCH OFF.

: 310, Dempo Towers, EDC Patto, Panaji-403 001. Goa State, India © : (0832) 2437048 / 2437164 E-mail : sadekarenviro@rediffmail.com • Website : www.sadekarenviro.com

LABORATORY : 8-306/307, Piot No. 61, Patel Estate, Reis Magos, Verem, Alto, Old Betim Road, Bardez, Porvorim, Panaji-Goa 408 101. Goa State, India. (): (0832) 2411322 / 23 * E-mail: starlabgoa@rediffmail.com * CIN No. U45209MH1998PTC-110379

SADEKAR ENVIRO ENGINEERS PVT. LTD.

Plot No. A-95, Road No. 16, Kisan Nagar Road, M.I.D.C. Wagle Industrial Area. Thane - 400 604. Maharashtra State. India ②: (91-22) 2583 3321 / 2583 3322 / 2583 3323 / 2583 3324 • E-mail. prs@sadekarenviro.com psadekar5@gmail.com

SAVE WATER SAVE LIFE

Gazetted By Ministry of Environment, Forest & Climate Change, Govt Of India, S. O. 857 (E), Valid upto 25 02 2023 * QCI-NABET Accredited EtA Consultancy Lab. accredited by NABL, Valid up to 26.03.2020 ★ Certified by ISO 9001:2015 & BS OHSAS 18001 : 2007

	ANAL	YSIS TEST REPO	ORT FOR \	WATER SAMPLE		
	-	<u> </u>		Report D	ate	30/12/2019
Name of Client	M/s. Noury	on Chemicals I	ndia Pvt i	td.		
Address of Client	Plot No. E-1	.8/19/20, 61 (P	art), MIDO	Mahad, Dist-Raig	ad. 402	302, Maharashtra
Order/Reference	As Per Date	ed – 13/12/201	9			
Sample Collection Date	13/12/2019)	Sample Receipt Date		13/1	12/2019
Analysis Started On	16/12/2019	16/12/2019 Analysis (is Completed On 19/12/		12/2019
Test Report No.	SEETL/W/1	2/19/068				
Environmental Condition Of Lab	Temp ⁹ C	27.1	27.1 Humidity %		5	51
Sampling Point	Amba Gard	ien				
Sample Details	Ground Wa	ater				
Sample Container	Sterile Glas	s Bottle		Sample Quantity	2	50 ml
Sample Collected By	SEETL Repr	esentative		20.8%	7.775.555	ep-, avi gogjepa vez se s

Microbiological Parameters

Sr. No.	Parameters	Results	Unit	IS desirable Limit (As per IS 10500) 2012	Method
1	Total coliforms at 37°C for 48 hrs.	Present	MPN index/100 ml	Absent	APHA-9221-8
2.	E.coli at 44.5°C for 24hrs.	Absent	MPN index/100 ml	Absent	APHA-9221-G

Note: Test results related only to the sample tested.

: This certificate may not be reproduced in part, without the permission of this laboratory.

: Method: APHA 23rd Edition: 2017

: Retention Period of Sample is 15 days from the date of Analysis report.

Engine Sea T. S.
Authorized Signatory Pooja Kalange

Vontred Sy.

BRANCH OFF. : 310, Dempo Towers, EDC Patto, Panaji-403 001. Goa State, India ①: (0832) 2437048 / 2437164 E-mail : sadekarenviro@rediffmail.com • Website : www.sadekarenviro.com

LABORATORY: 8-306/307, Plot No. 61, Patel Estate, Reis Magos, Verem, Alto, Old Betim Road, Bardez, Porvorim, Panaji-Goa-403 101.
Goa State, India. (2): (0832) 2411322 / 23 • E-mail: starlabgoa@rediffmail.com • CIN No. U45209MH1998PTC-116379

SADEKAR ENVIRO ENGINEERS PVT. LTD.

Ptot No. A-96, Road No. 16, Kisan Nagar Road, M.I.D.C. Wagle Industrial Area, Thane - 400 604. Maharashtra State, India. ② : (91-22) 2583 3321 / 2583 3322 / 2583 3323 / 2583 3324 ◆ E-mail ⊨prs@sadekarenviro.com / psadekar5@gmail.com

SAVE WATER SAVE WEE

Gazetted By Ministry of Environment, Forest & Climate Change, Govt Of India, S. O. 857 (E), Valid upto 25.02.2023 * QCI-NABET Accredited EIA Consultancy

Lab. accredited by NABL, Valid up to 26.03.2020 ★ Certified by ISO 9001:2015 & BS OHSAS 18001 : 2007

	ANALYSIS TEST REPORT FOR WATER SAMPLE
	Report Date 30/12/2019
Name of Client	M/s. Nouryon Chemicals India Pvt Ltd.
Address of Client	Plot No. E-18/19/20, 61 (Part), MIDC Mahad, Dist-Raigad. 402302, Maharashti
Order/Reference	As Per Dated – 13/12/2019
Test Report No.	SEETL/W/12/19/068

Sr. No.	Parameter	Result	Unit	IS desirable Limit (As per IS 10500) 2012	Method
Chem	nical Parameters				
16.	Total Alkalinity	244.12	mg/lit	200	IS 3025(Part 23):1986 (Reaffirmed 2014)
17.	Cyanide as CN	<0.02	mg/lit	0.05	APHA 4500-CN - E
Meta	ıl Analysis				
18.	Aluminum	0.073	mg/lit	0.03	APHA 3125 B
19.	Barium as Ba	0.095	mg/lit	0.70	APHA 3125 B
20.	Boron As B	0.10	mg/lit	0.50	APHA 3120 B
21.	Calcium as Ca	114.22	mg/lit	75.00	APHA 3500 Ca-B
22.	Iron as Fe	0.015	mg/lit	0.30	APHA 3125- B
23.	Magnesium as Mg	14.58	mg/lit	30.00	APHA 3500 Mg B
24.	Manganese as Mn	<0.01	mg/lit	0.1	APHA 3125- B
25.	Selenium as Se	<0.0025	mg/lit	0.01	APHA 3125- B
26.	Silver as Ag	<0.01	mg/lit	0.10	APHA 3125 B
27.	Zinc as Zn	0.053	mg/lit	5.00	APHA 3125- B
28.	Cadmium as Cd	<0.0025	mg/lit	0.003	APHA 3500 Cd
29.	Lead as Pb	<0.01	mg/lit	0.01	APHA 3125- B
30.	Mercury as Hg	<0.001	mg/lit	0.001	APHA 3500 Hg
31.	Molybdenum as Mo	< 0.01	mg/lit	0.07	APHA 3125 B
32.	Nickel as Ni	0.015	mg/lit	0.02	APHA 3125 B
33.	Arsenic as As	<0.01	mg/lit	0.01	APHA 3125 B

Note: Test results related only to the sample tested.

: This certificate may not be reproduced in part without the permission of this laboratory.

: Method: APHA 23rd Edition: 2017

: Retention Period of Sample is 15 days from the date of Analysis report.

Checked By Nilesh Naik

Authorized Signatory
Priti Thombare

Page 2 Of 2
Norther by
Jalune
34

BRANCH OFF. : 310, Dempo Towers, EDC Patto, Panaji-403 001. Goa State, India ①: (0832) 2437048 / 2437164
E-mail: sadekarenviro@rediffmail.com • Website: www.sadekarenviro.com

LABORATORY: B-306/307, Plot No. 61, Patel Estate, Reis Magos, Verem, Alto, Old Betim Road, Bardez, Porvorim, Panaji-Goa-40, 101.
Goa State, India. (): (0832) 2411322 / 23 • E-mail: starlabgoa@rediffmail.com • CIN No. U45209MH1998PTC-116379

Ptot No. A-95, Road No. 16, Kisan Nagar Road, M.I.D.C. Wagte Industrial Area, Thans - 400 604. Maharashtra Stato, India ②: (91-22) 2583 3321 / 2583 3322 / 2583 322 / 2583 322 / 2583 322 / 2583 322 / 2583 322 / 2583 322 / 2583 322 / 2583 22

Gazetted By Ministry of Environment, Forest & Climate Change, Govt Of India, S. O. 857 (E), Valid upto 25:02:2023 * QCI-NABET. Accredited EIA Consultancy

Lab. accredited by NABL, Valid up to 26.03.2020 ★ Certified by ISO 9001:2015 & BS OHSAS 18001 : 2007

			Report Date	20/12/20	019		
f Client							
of Client	Plot No. E-18/19/	20, 61 (Part), MIDC M	ahad, Dist-Raigad. 40	2302, Maha	arashtra.		
Reference	PO No. 45009079	16, Dated-22.08.2019	019				
Monitoring	13/12/2019	Time of Sampling Day					
	TC708619000002	155P			<u> </u>		
No.	SEETL/N/12/19/2	269-276					
red By	SEETL Representa	ative					
	DA	Y TIME NOISE LEVEL	MONITORING				
*	g Location neter away)	Report No	Day	Time	Noise Limits in dB(A) Leq		
	of Client Reference Monitoring No. ed By Samplin	of Client Plot No. E-18/19/ Reference PO No. 45009075 Monitoring 13/12/2019 TC708619000002 No. SEETL/N/12/19/2 ed By SEETL Represents DA Sampling Location	of Client Plot No. E-18/19/20, 61 (Part), MIDC M. Reference PO No. 4500907916, Dated-22.08.2019 Monitoring 13/12/2019 TC708619000002155P No. SEETL/N/12/19/269-276 ed 8y SEETL Representative DAY TIME NOISE LEVEL I Sampling Location Report No	Client M/s. Nouryon Chemicals India Pvt Ltd.	Client M/s. Nouryon Chemicals India Pvt Ltd.		

1.	Production Building	SEETL/N/12/19/269	67.5	90
2.	Day Tank Area	SEETL/N/12/19/270	67.1	90
3.	Utility Area	SEETL/N/12/19/271	78.9	90
4.	BCP Area	SEETL/N/12/19/272	83.7	90
5.	R.S. VI	SEETL/N/12/19/273	60.2	90
		AMBIENT NOISE LEVEL MONITOR	ING	
1.	Near Main Gate	SEETL/N/12/19/274	56.2	75
2.	Near New ETP	SEETL/N/12/19/275	66.6	75
3.	Near Emmergency Gate	SEETL/N/12/19/276	51.0	75

Method:-IS:9989-1981 (RA 2001)

NOTE: 1) Limit During Day time < 75. (Day time shall mean from 6.00 am to 10.00 pm.)

2) Limit During Night time < 70. (Night time shall mean from 10.00 pm to 6.00 am.)

3) # :- As per Factory Act Rules ,1963 scheduled XXIV Noise Limit 90dB(A) *dB(A) Leq denotes the time Weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

4) A "decibel" is a unit in which noise is measured.

5)"A", in dB (A) Leq, denotes the frequency weighting in the measurement of noise and corresponds to frequency response characteristics of the human hear.

6) Leq: It is the energy mean of the noise level over a specified period.

7) *This parameter is not included in NABL scope.

Authorized Signatory Nilesh Naik

BRANCH OFF. : 310, Dempo Towers, EDC Patto, Panaji-403 001. Goa State, India © : (0832) 2437048 / 2437164 E-mail : sadekarenviro@rediffmail.com • Website :sadekarenviro.com

LABORATORY: B-306/307, Plot No. 61, Patel Estate, Reis Magos, Verem, Alto, Old Betim Road, Bardez, Porvorim, Panaji-Goa-409 101.

Goa State, India. ©: (9832) 2411322 / 23 • E-mail: starlabgoa@rediffmail.com • CIN No. U45209MH1998PTC-116379

wither by.

M/s Nouryon Chemicals India Pvt. Ltd. (Formerly M/s Akzo Nobel India Limited) E- 18, 19, 20 & C-61 (Part), MIDC Mahad, District Raigad, Maharashtra.

Tree Plantation list:

Sr. No.	Name of Tree	No. of tree	Girth CM	Height CM
1.	Sag	1	61	213
		2	36	207
		3	64	219
		4	33	223
		5	41	210
		6	48	198
		7	38	183
		8	23	131
		9	41	186
		10	64	223
		11	36	216
		12	69	219
		13	56	229
		14	51	216
		15	79	207
		16	41	198
		17	30	207
		18	74	204
		19	64	210
		20	71	219
		21	25	216
		22	74	223
		23	51	216
		24	51	219
		25	89	219
		26	66	223
		27	38	210
		28	30	198
		29	53	183
		30	41	229
		31	28	216
		32	79	207
		33	74	198
		34	51	207

35 53 207 36 61 204 37 43 207 38 18 119 39 51 216 40 53 219 41 71 229 223 4 104 232 5 58 229 6 74 207 7 97 241 8 135 207 9 127 262 10 61 210 11 58 223 12 41 180 13 84 207 14 114 219 15 51 244 16 33 152 17 56 244 18 97 244 18 97 244 18 97 244 18 97 244 18 97 244 18 97 244 18 97 244 19 30 122 20 23 15 21 20 20 210 27 262 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244 34 150 207					
37			35	53	207
38			36	61	204
39 51 216 40 53 219 41 71 229 2. Mango			37	43	207
2. Mango			38	18	119
2. Mango 1 203 244 2 89 204 3 79 223 4 104 232 5 58 229 6 74 207 7 97 241 8 135 207 9 127 262 10 61 210 11 58 223 12 41 180 13 84 207 14 114 219 15 51 244 16 33 152 17 56 244 18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244			39	51	216
2. Mango 1 203 244 2 89 204 3 79 223 4 104 232 5 58 229 6 74 207 7 97 241 8 135 207 9 127 262 10 61 210 11 58 223 12 41 180 13 84 207 14 114 219 15 51 244 16 33 152 17 56 244 18 97 244 18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244			40	53	219
2 89 204 3 79 223 4 104 232 5 58 229 6 74 207 7 97 241 8 135 207 9 127 262 10 61 210 11 58 223 12 41 180 13 84 207 14 114 219 15 51 244 16 33 152 17 56 244 18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244 <th></th> <th></th> <th>41</th> <th>71</th> <th>229</th>			41	71	229
3 79 223 4 104 232 5 58 229 6 74 207 7 97 241 8 135 207 9 127 262 10 61 210 11 58 223 12 41 180 13 84 207 14 114 219 15 51 244 16 33 152 17 56 244 18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244	2.	Mango	1	203	244
4 104 232 5 58 229 6 74 207 7 97 241 8 135 207 9 127 262 10 61 210 11 58 223 12 41 180 13 84 207 14 114 219 15 51 244 16 33 152 17 56 244 18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 <th></th> <th></th> <th></th> <th></th> <th>204</th>					204
5 58 229 6 74 207 7 97 241 8 135 207 9 127 262 10 61 210 11 58 223 12 41 180 13 84 207 14 114 219 15 51 244 16 33 152 17 56 244 18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86				79	223
6 74 207 7 97 241 8 135 207 9 127 262 10 61 210 11 58 223 12 41 180 13 84 207 14 114 219 15 51 244 16 33 152 17 56 244 18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 </th <th></th> <th></th> <th></th> <th>104</th> <th>232</th>				104	232
7 97 241 8 135 207 9 127 262 10 61 210 11 58 223 12 41 180 13 84 207 14 114 219 15 51 244 16 33 152 17 56 244 18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71					229
8 135 207 9 127 262 10 61 210 11 58 223 12 41 180 13 84 207 14 114 219 15 51 244 16 33 152 17 56 244 18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244					207
9 127 262 10 61 210 11 58 223 12 41 180 13 84 207 14 114 219 15 51 244 16 33 152 17 56 244 18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244					241
10 61 210 11 58 223 12 41 180 13 84 207 14 114 219 15 51 244 16 33 152 17 56 244 18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244					207
10 61 210 11 58 223 12 41 180 13 84 207 14 114 219 15 51 244 16 33 152 17 56 244 18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244					262
12 41 180 13 84 207 14 114 219 15 51 244 16 33 152 17 56 244 18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244			10		210
13 84 207 14 114 219 15 51 244 16 33 152 17 56 244 18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244			11	58	223
14 114 219 15 51 244 16 33 152 17 56 244 18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244			12	41	180
15 51 244 16 33 152 17 56 244 18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244			13	84	207
16 33 152 17 56 244 18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244			14	114	219
17 56 244 18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244			15		244
18 97 244 19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244			16	33	152
19 30 122 20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244			17		244
20 23 15 21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244			18	97	244
21 20 110 22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244			19	30	122
22 89 244 23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244			20	23	15
23 20 91 24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244					110
24 13 85 25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244					244
25 13 82 26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244			23	20	91
26 99 210 27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244					85
27 97 223 28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244			25	13	82
28 76 247 29 74 207 30 86 219 31 38 155 32 71 244 33 58 244			26	99	210
29 74 207 30 86 219 31 38 155 32 71 244 33 58 244			27		
29 74 207 30 86 219 31 38 155 32 71 244 33 58 244			28		247
30 86 219 31 38 155 32 71 244 33 58 244			29	74	
32 71 244 33 58 244			30	86	
32 71 244 33 58 244			31	38	155
33 58 244			32	71	
34 150 ₂₀₇			33		
			34	150	207

		35	61	244
		36	81	244
				192
		37	89	244
		38	119	262
		39	89	210
		40	61	223
		41	46	247
		42	8	85
		43	33	128
		44	8	67
		45	61	158
		46	117	244
		47	51	146
		48	46	128
		49	81	244
		50	23	64
		51	142	262
		52	99	210
		53	41	149
		54	61	247
		55	66	207
		56	30	155
		57	51	226
		58	76	207
		59	97	219
		60	76	238
		61	48	7
		62	81	241
		63	102	229
		64	97	223
		65	58	232
		66	8	94
3.	Coconut	1	132	204
		2	69	186
		3	107	192
		4	122	189
		5	94	192
		6	97	229
		7	102	226
		8	71	204
		9	102	204
				229

10					
12 69 204 13 33 128 14 38 131 15 23 98 16 25 98 17 28 98 18 30 98 19 61 183 20 99 216 21 43 189 22 112 195 23 112 195 24 124 195 25 119 195 26 99 204 27 117 204 28 97 204 29 109 219 30 97 226 31 86 204 4. Palm 1 97 146 2 114 149 3 23 125 4 58 146 5 53 131 6 145 238 7 58 213 8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219					88
13			11	15	88
14			12	69	204
15			13	33	128
16			14	38	131
17			15	23	98
18 30 98 19 61 183 20 99 216 21 43 189 22 112 195 23 112 195 24 124 195 25 119 195 26 99 204 27 117 204 28 97 204 29 109 219 30 97 226 31 86 204 4. Palm 1 97 146 2 114 149 3 23 125 4 58 146 5 53 131 6 145 238 7 58 213 8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219			16	25	98
19 61 183 20 99 216 21 43 189 22 112 195 23 112 195 24 124 195 25 119 195 26 99 204 27 117 204 28 97 204 29 109 219 30 97 226 31 86 204 4. Palm 1 97 146 2 114 149 3 23 125 4 58 146 5 53 131 6 145 238 7 58 213 8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219			17	28	98
4. Palm 1			18	30	98
4. Palm Palm 1			19	61	183
4. Palm 1			20	99	
4. Palm 1			21	43	189
4. Palm 1 1 97 146 2 114 149 3 23 125 4 58 146 5 53 131 6 145 238 7 58 213 8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219			22	112	195
25 119 195 26 99 204 27 117 204 28 97 204 29 109 219 30 97 226 31 86 204 29 114 149 3 23 125 4 58 146 5 53 131 6 145 238 7 58 213 8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219 102 219 103 207 104 105 219 105 210			23	112	
25 119 195 266 99 204 27 117 204 28 97 204 29 109 219 30 97 226 31 86 204 29 114 149 3 23 125 4 58 146 5 53 131 6 145 238 7 58 213 8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219 10 100			24	124	
26 99 204 27 117 204 28 97 204 29 109 219 30 97 226 31 86 204 4. Palm 1 97 146 2 114 149 3 23 125 4 58 146 5 53 131 6 145 238 7 58 213 8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 71			25	119	
28 97 204 29 109 219 30 97 226 31 86 204 4. Palm 1 97 146 2 114 149 3 23 125 4 58 146 5 53 131 6 145 238 7 58 213 8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219			26	99	204
29 109 219 30 97 226 31 86 204 4. Palm 1 97 146 2 114 149 3 23 125 4 58 146 5 53 131 6 145 238 7 58 213 8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 15 241 15 196 219 16 117 192 17 79 207 18 102 219			27	117	204
30 97 226 31 86 204 4. Palm 1 97 146 2 114 149 3 23 125 4 58 146 5 53 131 6 145 238 7 58 213 8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219			28	97	204
31 86 204 4. Palm 1 97 146 2 114 149 3 23 125 4 58 146 5 53 131 6 145 238 7 58 213 8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219			29	109	219
4. Palm 1 97 146 2 114 149 3 23 125 4 58 146 5 53 131 6 145 238 7 58 213 8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219			30	97	226
2 114 149 3 23 125 4 58 146 5 53 131 6 145 238 7 58 213 8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219			31	86	204
3 23 125 4 58 146 5 53 131 6 145 238 7 58 213 8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219	4.	Palm	1	97	146
4 58 146 5 53 131 6 145 238 7 58 213 8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219			2	114	149
5 53 131 6 145 238 7 58 213 8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219			3		125
6 145 238 7 58 213 8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219					146
7 58 213 8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219			5		131
8 142 146 9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219			6	145	238
9 117 219 10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219					213
10 99 207 11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219					146
11 81 185 12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219					219
12 157 250 13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219					207
13 168 256 14 155 241 15 196 219 16 117 192 17 79 207 18 102 219			11		185
14 155 241 15 196 219 16 117 192 17 79 207 18 102 219					250
15 196 219 16 117 192 17 79 207 18 102 219			13		256
16 117 192 17 79 207 18 102 219					241
17 79 207 18 102 219					219
18 102 219					192
10 71					207
19 71 210					219
			19	71	210

5. Sapo	dilla	1	43	192
	_		43	149
		2	38	168
1	-	3	33	171
	-	4	41	177
	-	5	43	180
		6	30	162
	-	7	25	162
	-	8	38	177
	-	9	33	174
	-	10	28	180
	-	11	36	177
		12	41	162
	-	13	56	158
	-	14	30	165
6. Guav	a	1	58	162
	-	2	56	177
	-	3	71	180
	-	4	46	158
	-	5	38	171
	-	6	20	122
	-	7	25	192
	T	8	38	189
		9	28	177
		10	33	174
		11	30	171
		12	36	171
		13	28	180
		14	28	174
7. Umb	ar	1	99	256
		2	165	247
	-	3	168	244
		4	107	238
	-	5	48	162
8. Jamu	n	1	152	232
	-	2	141	219
		3	178	271
		4	147	219
	-	5	47	104
9. Kaju		1	23	149
		2	43	174

		•	•	
		3	48	171
		4	51	178
10.	Kud	1	33	174
11.	Ashok	1	20	207
12.	Chafa	1	119	192
13.	Vad	1	191	219
14.	Kadulimb	1	64	207
		2	61	192
		3	53	195
		4	48	174
		5	66	180
15.	Bhokar	1	185	229
		2	94	232
		3	119	232
		4	84	232
		5	71	226
16.	chinch	1	30	232
17.	Pinpal	1	302	299
18.	Karanj	1	112	302
		2	114	268
		3	94	262
		4	84	280
		5	51	287
		6	43	296
19.	Kanchan	1	64	174
		2	48	177
20.	Shevar	1	79	192
21.	Badam	1	119	210
22.	Nibara	1	64	219
		2	99	223
23.	Gulmohar	1	107	226
24.	Ashtbabhull	1	86	256
		2	127	223
25.	Mhavyache zad	1	76	210
		2	64	241
		3	114	256
		4	124	271
26.	Niv	1	53	244
		2	58	247
		3	56	253
		4	61	262
		4	61	262

		5	50	247
		6	61	271
27.	Subabhul	85		
28.	Cell area	153		
29.	Cell area	49		
	Total	529		

(See rule 18(7) and Schedule II, III, IV, VI, VIII, X

Health

(In respect of persons employed in occupations

ay: Mare Name of Certifying Surgon:

					FA	1		2			_	Harry	J	*	Paloto	>	-
Nature of job or occupation	a	Carl Carl	77	Filtree	Neldos ecomplika	Operator	Fixe	Eleaper C. m	SHIP Bra	Engl-Ing	Engg-Elect	Store Risistant	Office OC	Engg-ETP	STATE TABLE	Engg-ETP	Enga-Mech
Reason for leaving Transfer or discharge	60																
Date of isaving or transfer to other work	7																
Date of emptoy- ment of present work	9	01540		26/9/93	17 6 46	2 12 93	6 11192	शिस्ट(3495	धाराय	20 6 19	21195	10294	6 6 14	52118	2 5 12	611197
Age (last birth-day)	lΩ	100		44	44	15	52	2.7	94	39	60	55	49	42	42	8	43
Sex	4	Σ		Σ	Σ	- Σ	Z	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Z	Σ
Name of worker	8	Country (1)		Askish O Nimbalkae	Peakash C Dhomaliyal	Soniay & Babat	Dilip S Jodhav	Negosh R Kadam	Miliad A Italipad	Manik U kanse	Shirafi M Mande	Rajendea R Sogveton	Dayonder Theologis	Mayue 5 Gawoole	Akshay B Atule	Dird U Kamor	Nighant D Desmuty M
Works No.	2																
Seriai No.	-	-	4	d	M	2	0	9	14	8	न्	10	=	व	2	14	5

M.S GENERAL SURGEON
Reg. No. 3485/2010/11

1

XI, XIII, XIV, XV, XVII, XVIII and XX to rule 114)

Register declared to be dangerous operations under section 87)

FORM

(See rule 18(7) and Schedule II, III, IV, VI, VIII, X

Health

(In respect of persons employed in occupations

Name of Certifying Surgon:

			- 0	4.			A							_	_	-	17	
	Nature of job or occupation			Openior-UP	(Ingletoned	Pither.	Operator	Arehase	OHC-PSSISAN	gross Briching	THING	Operator-ETP	experator prod	Eleatercido	Direct	OFFICE OC	Operator	
	Reason for leaving Transfer or discharge	40		-														
	Date of leaving or transfer to other work	7													<u>20</u>	th.	\$	_
i	Date of employ- ment of present work	80		26/4/19	11194	119196	15 R 38	16[4]44	1991	योगहा	12 8 9)	111196	व्वविवि	24/10/1	य्यापिङ	Fasisa	1112/15	
	Age (last birth-day)	ю		28	647	54	49	57	2.3	9/7	29	44	53	44	52	94	15	
ŀ	Xe X	4		Σ	Σ	Σ	Σ	I	되	Σ	Σ	Σ	Σ	Σ	Σ	2	Σ	-
	Name of worker	8		Abhishek C. Bandogale	Rodesch H Swinde	Rormdag G Pacoot	Manchae Khopatkae	Chooleo T Aldernath	Sayali K. Mahadik	Nandremoe D Tembe	Mahesh R Nauk	Rajesh T Lad	Dupok M JOSHI	PEDGNOMIP PHOEWING	Rajan S Dnodve	People p Brandalekas	Peakosh K saedal	
	Works No.	8							-						7.			
	No.	-		9	<u>d</u>	20	9	20	77	22	23	24	2	26	27	200	12	ŀ

XI, XIII, XIV, XV, XVII, XVIII and XX to rule 114)

Register

declared to be dangerous operations under section 87)

1 Changale 1 Shinde 1 Shinde 1 Shinde 1 Shinde 1 T Lad 1 Tobbi			Date of eaving ment of eaving present to other work work work work	Reason for leaving Transfer of discharge 8	Nature of occupation B B Coperator Fithe Coperator (a) Mr. From (b) Mr. From From From From From From From From	Date of medical amination by Cartifying Surgeon 11 11 110 119	Pr. Results of Medical Examination	If auspanded from work state period of suspension with detailed reasons 12 12	Certified fit to resume duty on with signature of Certifying Surgeon 13 13 Rate 20-12 MAS MINGS WHAS ARTHURA 19 ARTHURA	M S G E MERA S INGEON Reg No. 34 557 2000/11 Reg No. 35 557 2000/11 Reg No. 37 557 2000/11 Reg No. 35 557 2000/11	Tiffed fit cartificate signature of mittoese of cartifying of suspension session setting of cartifying of suspension to worker 15 13	
B Tandaleka	Ξ		£05/20		Officer Oc	- 0				NE S.E	SENERAL GENERAL	SUPRECON
K Soredal	Σ	15	1112/15		Operator.	Acid enjourale	de			Re क	들면 뭐느	TH (MUMBA!) 465/2000/11 यम १९४८ च्या गे स्पंगड मिल्डाकरिता

(See rule 18(7) and Schedule II, III, IV, VI, VIII, X

Health

Name of Certifying Surgon: 1 Dhanay: Mare

Serial No.

(In respect of persons employed in occupations

Works No.	Name of worker	Sex	Age (last birth-day)	Date of employment of present work	Date of leaving or transfer to other work	Reason for leaving Transfer or discharge	Nature of job or occupation	
2	6	4	ιΩ	ဖ	7	8	65	_
	Madhildeae N Pendhaea	Z	55	21192			SWH TREPORT	
	Parksh & Earle	Σ	24	21112			of an and and	AUD
	40	Σ		31511				
	Mahendea M Chute	Σ	497	योय्ष			Eleakeeldm	
14	Dasheath R Pati	Σ	44	8)भावप			Operator	Aeid C
THE STATE OF	Prakash 17 More	Σ	15	1/10/93			日本や	
	Subhash Tchaudhau	Σ	54	914141			Coperator	Aed
	Sweesh D Paril	Σ	52	शियुद्ध			Swith Inchaege	
	Samble 6 fatel	Σ	50	याधि			Inditionint	
:	Sandip M kadam	Σ	94	115195			Swith Ireness	
	Brogwan A Braud	Σ	54	1389			Pitte	
	नक्षका न ज्ञ्बिष्टि	Σ	29	24112			Operatorette	auph
1	Paegnu Pamil Salpal	Σ	ήh	11196			Operator Red	Aeid C
	Kalpesh L. Kadam	Σ	84	28/8/7			०क्षिक-विट	1
IN THE	Bhoeat D Shinde	Σ	49	4391			ERPECIAN	

2

XI, XIII, XIV, XV, XVII, XVIII and XX to rule 114)

Register declared to be dangerous operations under section 87)

(a) Mr. (b) Mr. (c) Mr. (a) Mr. (b) Mr. (c) Mr. (c) Mr. (d) Mr. (e) Mr.	**************************************	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	***************************************	
	0 0 0 0 0 0 0 0 0 0 0			
			P4 = 4 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	4-1-4-1-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4
	to	\$		to
	2019			
	Bher			****
	O m		,	mo
				Ę

Reaults of from work to instantion on the following the period of the pe			Date of			f ellenandar		***	
11 10/19 — 674 — 6		Raw material or bye product handled	Examination Examination by Certifying Surgeon		Results of Medical Examination	from work state period of suspension with detailed reasons	to resume dufy on with signature of Certifying	certificate of of unfitness or suspension issued to worker	Signature with date of Certifying Surgeon
Acid Chilerida		10				12	13	4	15
Acid Chievide. Acid Chievide. A. C.			-	Ľ∂				-	
Acid Chicesed " " " " " " " " " " " " " " " " " " "	_		4	2 2					
Acid Chloride. 6	BOARTC		Č						
Acid culocude Acid c	1	Preid	1,1	- L	Access to the second se				
Acid Chibeside (1) (1) (1) (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	_			1					
Acid Culoeside 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
Acid Culoeside 7 17 85 194101 M.S GENERA And Acid Culoeside 7 17 17 17 18410 MET 18 18 18 18 18 18 18 18 18 18 18 18 18				- N			-) NAME
Acid Chicklid (1 11 11 11 11 11 11 11 11 11 11 11 11									1
Acid Obline! RACID 1 1 1 1 1 1 1 1 1	Aeso			1)			1		H
Acid Othloeidd. 1,) =	S GENE	SURG
Acid Ohloeidd. ', ', ', ', ', ', ', ', ', ', ', ', ',			C	11					IH (MUMBAI)
Acid Oblices dd. ", " Rains 30-18-2032 ung ninneam fluing 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								कारवाने अधिन	यम १९४८ च्या
Autometical (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	E	त लेकाना क	200	4			10	लम १० (२) प्रमा	। सयगड जिल्ह्याकरिता
Auphretical (17) Si. ET			11				दिनांक २०	がっない-18-	विनाक १९-११-२०२
(11			Nation	मिन्द्रियस्थ	Zandozook & bl
34 Chloesde							,		
Authwellkingld (* 1.)	6			11					
34 PT ST PT PT ST									Merce
Automobile () At any and a strain and a str			1,						/
M S GENERA Reg. No. 34 Reg. No. 34 किसंद २० १९ २० प्रमाण क्रियंद २० १९ २० १८ पाएम क्रियंद २० १९ २० १८ पाएम							(N)	. धनाज	E
() ि ि कारखाने अधिनिय कारखाने अधिनिय कारखाने अधिनिय कारखाने अधिनिय कारखाने अधिनिय (२) प्रमाण प्रमाण प्रमाण प्रमाण प्रमाण प्रमाण प्रमाण				(y)	*		_	AS GENER	SURG
कारखाने अधिनिव कल्प १० (२) प्रमाणे सिनंक २० १९ २०१८ गासुन प्राधिक्त प्रमाणकश्रात्यां केत्रस्व									65/2000/11
कराम १० (२) प्रमाण सिमंद्र २० १९ २०१८ गायुग आयिक्त प्रमाणकशान्यां केन्स्र	न	phue 1 k Acta	10.00	7				कारबाने उ	म १९४८ व्या
अपिकृत प्रमायकश्रास्ति केस्पर							P is	(b) o)	तमगड जिल्ह्याकारता
	Hej.	Chloendo		53			Digital in	क्षा रण्डल गायुन्य प्रमाणकश्रान्यतिकस्य	4114 14-14-40-40

(See rule 18(7) and Schedule II, III, IV, VI, VIII, X

Health

(In respect of persons employed in occupations

Name of Certifying Surgon: [[[Lanay | Mane,

Swith Tarkbeag Logistes. Marring Pendeuchen Many Mount-Monzage MSES Mamague Treamspool Planner Nature of job or occupation MPR 00 HRA Reason for leaving Transfer or discharge 00 Date of leaving or transfer to other work 2815193 Date of employ-ment of present work 1112 95 16/8/19 15/2/35 84 m 84 21/10/19 18/11/81 15998 10311 φ Age (last birth-day) 43 45 34 52 52 54 29 10 97 Sex Σ Σ Σ Σ Σ Σ 5 Σ Dattateay PoThaker Any M Waghmore sanyoy G Salumke Vinad Kawahuka Panolet R Kulkoeni Milma Deshipande Anil I Kashyap Visioyak S Angal Ashwini 6 Yogi Name of worker Works No. \sim Serial No. 46 43 847 649 20 52 54 53

XI, XIII, XIV, XV, XVII, XVIII and XX to rule 114)

Register

declared to be dangerous operations under section 87)

Signature with date of Certifying Surgeon 15						5	1 4	Now	1	甘尼	M.S GENERAL SURGEON	FIH (MUMBAI)	कारवाने आधीतम १९४८ च्या	मण रायगड जिल्ह्याकरिता	न दिनाक १९-११-२०२०	THE & ACCESON/20							
If certificate of unfitness or suspension issued to worker 14										State State	M.S GENE	Dog Me	व्यत्वाने आ	१० (४) व	वनक २०-११-२०१८ पा	المشيئة والمساحلة	\						
Certified fit to resume duty on with signature of Certifying Surgeon 13															रमाक	dhiik							
If suspended from work state period of suspension with detailed reasons																							
Results of Medical Examination																						,	
	-BT		1		1		Rt		- F3		ty		R'E		ر در ا		14						
Date of medical Examination by Certifying Surgeon 11	61 01 11	-		-				1)			-	-			,								
Raw material or bye product handled																							

MAHARASHTRA INDUSTRIAL DEVELOPMENT CORPORATION

(A Government of Maharashtra Undertaking)

No. MIDC/FIRE/Final-NOC/3196 Date: 02/12/2015

M/s. Akzo Nobel Chemicals Ltd., Plot No. E-19, E-20 & C-61, MIDC, Mahad Indl. Area. Dist - Raigad.

> Sub: Grant of "Final No Objection Certificate" for construction of ETP on Plot No. E-19, E-20 & C-61, MIDC, Mahad Indl. Area...

Ref: i) This Office "Provisional NOC" No. MIDC/Fire/60, Dated 06/01/2012.

ii) Your Application Number; SWC/20/1/20150104/317186.

Dear Sir.

With reference to the above, a representative of this office visited your factory on 02/09/2015 to the above-mentioned address for inspection of fire fighting arrangements provided by you. Since the fire fighting arrangements provided by you were found in satisfactory working conditions and form "B' from the License agency M/s. Neshall Enterprise (MFS-LA/RF-0137 & MFS-LA/RD-0105), who is licensed agency registered under the provision of The Maharashtra Fire Prevention and Life Safety Measure Act, 2006. Considering the same "Final No-Objection Certificate" issued to your construction on above mentioned address for the built up area admeasuring to 5938.90 Sqm.

Following Statutory Provisions Under Maharashtra Fire Prevention and Life Safety Measures Act, 2006, should be adhered.

- 1. Under Section 3 of "Maharashtra Fire Prevention and Life Safety Measures" Act, 2006" (hereinafter referred to as "said Act"). The applicant (developer, owner, occupier by whatever name called) shall comply with all the Fire and Life Safety measures adhering to National Building Code of India, 2005 and as amended from time to time failing which it shall be treated as a violation of the said Act.
- 2. It is presumed that you have completed the work adhering to the provisions under Section-3 of the said Act.
- 3. Under sub-section (3) of Section 3, it is responsibility of the Owner or the Occupier as the case maybe, shall furnish to The Chief Fire Officer or nominated officer a Certificate in a prescribed form twice a year in the Month of January & July regarding maintenance of fire prevention and life safety measure in good repair and efficient condition as specified in sub-section (1).
- 4. Under sub section (4) of Section 3, no person shall tamper with, alter, remove or cause any injury or damage to any fire prevention and life safety equipment installed in any such building or part thereof or instigate any other person to do

The Fire Extinguishers & other safety system installed by you in the factory all the time. If the fire protection system is not maintained, retrenched then this "N.O. will stand cancelled without any notice & you will be solely responsible to loss of life or property if any, which may please be noted.

HEAD OFFICE: "Udyog Sarathi", Mahakali Caves Road, Andheri (E), Mumbai - 400 093. Tel.: (022) 2687 0027 / 52 / 54 / 73 Fax: (022) 2687 1587 World Trade Centre, Mumbai Office: 4, 4(A), 12th Floor, World Trade Centre, Centre-1, Cuffe Parade, Mumbai - 400 005. Tel,: (022) 2215 1451/52/53 Fax: (022) 2218 8203

Wahsita - http://www.mideindia.com

As per Office Order No. MIDC/Fire Dept/1078 dated 12/07/06, M/s. Akzo Nobel Chemicals Ltd., Plot No. E-19, E-20 & C-61 had deposited Initial Fire Protection Fund Fees amounting to Rs. 20,000/- (Rs. Twenty Thousand Only) & Rs. 50,000/- (Rs. Fifty Thousand Only) vide receipt No. 571 & HQC16_001542, Dated-29/12/2011 & 13/08/2015.

The undersigned reserves right to amend any additional recommendations deemed fit during the stage wise inspection due to the statutory provisions amended from time to time and in the interest of the protection of the company.

NOUS TRIAL

Thanking you

Yours faithfully,

(D. P. Potphode)
Dy. Chief Fire Officer,
MIDC, Mumbai-400 093.

Copy to Executive Engineer, MIDC, Mahad Division (SPA) for information please.

Maharashtra Pollution Control Board महाराष्ट्र प्रदूषण नियंत्रण मंडळ

Manifest For Hazardous And Other Waste

Submitted Date: 12-12-2019

Apply as Generator

Unit Name	Plant Name	Submit To
Nouryon Chemicals India Private Limited	MAHAD	SRO-Mahad

S	ender name and mailing address (includin	g phone no. and ema	il.)
Sender Name	Sender Address	Sender Mobile No.	Sender Email
Nouryon Chemicals India Private Limited	PLOT E-18,19,20 & C-61 PART/PART, MIDC INDUSTRIAL AREA MAHAD, DIST RAIGAD	9049173399	milind.deshpande@nouryon.com

Sender authorisation No	Manifest Document No
BO/AST/MPCB-CONSENT-0000074098/O-1908000496	MPCB-HW_MANIFEST-0000007218

Trans	porter's name	and address (including phor	ne no. and email.)	
Transporter Name	Vehicle No.	Transporter Address	Transporter Mobile No.	Transporter Email
Mumbai Waste Management Limited, Plot No. P - 32 and P - 32 (part), MIDC, Taloja, Panvel.	MH-46/F-688	PLOT NO 32,MIDC, TALOJA, DIST RAIGAD, PIN 410208	2227401468	mbdmwml@ramky.com

		Waste Generation Deta	ails	
Sr No	Date	Waste Category	Waste Name	Waste QTY
1	01-01-1900			

	Waste Disposal Details								
Sr No	Date	Waste Category	Waste Name	Waste QTY	Waste Disposal To	Name of unit	Address of unit	Contact of unit	Email of unit
1	12-12-2019	35.3 Chemical sludge from waste water treatment	Sludge from waste water treatrment	0.350	CHWTSDF	Mumbai Waste Management Itd	PLOT NO 32,MIDC, TALOJA, DIST RAIGAD, PIN 410208	02227401468	mbdmwml@ramky.com
2	12-12-2019	33.1 Empty barrels/containers/liners contaminated with hazardous chemicals /wastes	Empty paint tins	0.118	CHWTSDF	Mumbai Waste Management Itd	PLOT NO 32,MIDC, TALOJA, DIST RAIGAD, PIN 410208	02227401468	mbdmwml@ramky.com

3	12-12-2019	33.1 Empty barrels/containers/liners contaminated with hazardous chemicals /wastes	Empty bags	0.045	CHWTSDF	Mumbai Waste Management Itd	32,MIDC, TALOJA, DIST RAIGAD, PIN	02227401468	mbdmwml@ramky.com
							410208		

Maharashtra Pollution Control Board

महाराष्ट्र प्रदूषण नियंत्रण मंडळ

Form 4

See rules 6(5),13(8),16(6) and 20(2) of Hazardous and other wastes 2016

FORM FOR FILING ANNUAL RETURNS

[To be submitted to state pollution control board/pollution control committee by 30th June of every year for the preceeding period April to march]

Unique Application Number:

Submitted On:

MPCB-HW ANNUAL RETURN-0000013274

02-06-2020

Submitted for Year:

April 2019 to March 2020

1. Name of the generator/operator of facility Address of the unit/facility

Nouryon Chemicals India Private Limited

Plot no. E-18,19,20 & C-61 (Part/Part), MIDC Area Mahad

1b. Authorization Number Date of issue Date of validity of consent

Feb 28, 2021

CC/UAN No. 0000003495/2003000030

Mar 12, 2020

2. Name of the authorised person Amit M.Salagare

Nouryon Chemicals India Private Limited, Plot no. E-18,19,20 &

C-61 (Part/Part), MIDC Area Mahad

Full address of authorised person

Telephone

Fax

Email

904917339

02145232148

amit.salagare@nouryon.com

3. Production during the year (product wise), wherever applicable

Product Type *	Product Name *	Consented Quantity	Actual Quantity	UOM
Chemical ,Petrochemical &Electrochemical	Organic Peroxide	3419.52	754	MT/A
Chemical ,Petrochemical &Electrochemical	Metal Alkyls	1701.96	315	MT/A
Chemical ,Petrochemical &Electrochemical	Sodium Chloride Salt	1296.00	19	MT/A

PART A: To be filled by hazardous waste generators

1. Total Quantity of waste generated category wise

Type of hazardous waste	Wate Name	Consented Quantity	Quantity	иом
34.2 Sludge from treatment of waste water arising out of cleaning / disposal of barrels / containers	ETP Sludge	14.00	2.617	MTA
20.2 Spent solvents	Spent Solvent	24.00	1.310	MTA
12.2 Spent acid and alkali	Spent Chemicals	20.00	2.08	MTA
33.1 Empty barrels/containers/liners contaminated with hazardous chemicals /wastes	Empty containers	240.00	221	numbers/anum

2. Quantity dispatched category wise.

Type of Waste	Quantity of waste	UOM	Dispatched to	Facility Name
34.2 Sludge from treatment of waste water	2.282	MTA	Disposal Facility	Mumbai Waste

20.2 Spent solvents	1.310	МТА	Co-processors or pre- processor	Kusum Distillation & Reffineing Pvt. Ltd
12.2 Spent acid and alkali	2.08	MTA	Disposal Facility	Mumbai Waste Management Ltd
33.1 Empty barrels/containers/liners contaminated with hazardous chemicals /wastes	226	numbers/anum	Disposal Facility	Mumbai waste Management Ltd

3. Quantity Utilised in-house, If any

Type of Waste Name of Waste Quantity of Waste UOM
0 0 KL/Anum

4. Quantity in storage at the end of the year

Type of WasteName of WasteQuantity of WasteUOMNA0KL/Anum

PART B: To be filled bt Treatment, storage, and disposal facility operators

1.Total Quantity received	UOM	State Name
NA	KL/Anum	Other
2. Quantity in stock at the beginning of the year	иом	
NA	KL/Anum	
3. Quantity treated	иом	
NA	KL/Anum	

4. Quantity disposed in landfills as such and after treatment

Direct landfilling **UOM** NA KL/Anum **UOM** Landfill after treatment NA KL/Anum **UOM** 5. Quantity incinerated (if applicable) KL/Anum NA 6. Quantiry processed other than specified above UOM KL/Anum 7. Quantity in storage at the end of the year. **UOM** NA KL/Anum

PART C: To be filled by recyclers or co-processors or other users

1. Quantity of waste received during the year

Waste Name/Category	Country Name	State Name	Quantity of waste received from domestic sources	Quantity of waste imported(If any)	Units
NA	NULL	Other	NA	NA	KL/Anum

2. Quantity in stock at the beginning of the year

Waste Name/CategoryQuantityUOMNANAKL/Anum

3. Quantity of waste recycled or co-procesed or used

Name of WasteType of WasteQuantityUOMNANANAKL/Anum

4. Quantity of products dispatched (wherever applicable)

 $\begin{array}{ccc} \textit{Name of product} & \textit{Quantity} & \textit{UOM} \\ \textit{NA} & \textit{NA} & \textit{KL/Anum} \\ \end{array}$

NA	NA	KL/Anum
6. Total quantity of waste disposed		
Waste name/category NA	quantity NA	UOM KL/Anum
7. Total quantity of waste re-exported (If Applicable)		
Waste name/category NA	quantity NA	UOM KL/Anum
8. Quantity in storage at the end of the year		
Waste name/category NA	quantity NA	UOM KL/Anum
Personal Details		
Place	Date	Designation

2020-06-02

SITE MANAGER

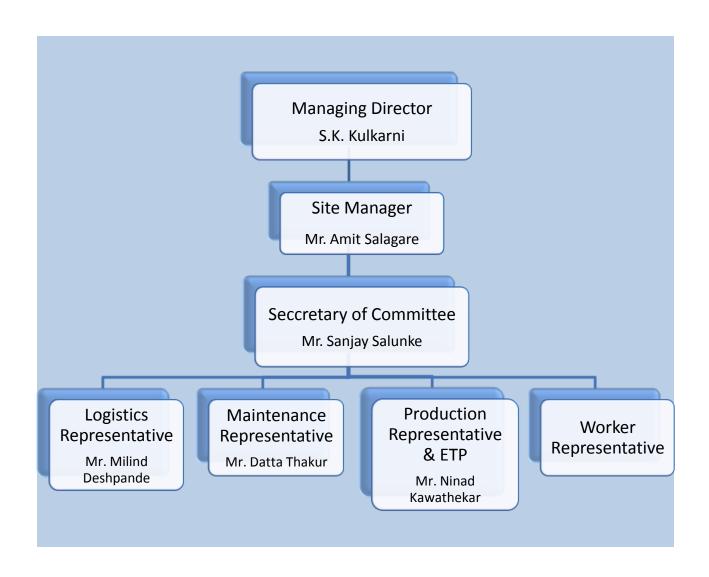
MAHAD

Nouryon Chemicals India Private Limited <u>Emergency Preparedness Drill Record</u>

F-HSE-08

Sr. No.	Check point	Observation
1	Drill No.	2019/Emergency preparedness Drill/02
2	Date of mock drill	14.10.2019
3	Time	17.05 hrs
4	Location	Old ETP
5	Description of emergency	Decomposition in Chemical sewer
6	First observer of Incidence	Security Guard
7	Emergency siren raised at	17.07 Hrs
8	All clear siren raised at	17.31 Hrs
9	Chief incident controller reporting time	17.10 Hrs (Amit Salagare)
10	Site controller name	SGS 17.08 Hrs
	Reporting time	NDK 17.08 Hrs
11	Incident controllers name	M N Pendhari
12	Emergency control room coordinator	A M Waghmare
	Reporting time	17.09 Hrs
13	Assembly point 1, in charge	D P Thakur
14	Assembly point 2, in charge	Security Supervisor
15	Emergency team members	Production Shift In-charge, production operator, ETP Operator, ETP Engineer
16	First aider	Sayali Mahadik
17	Duties performed by the security in	Closed the main security gate
	charge	Small gate locked by security guard
		 Arranged personnel of Assembly point 2 in rows and checked head count.
		Locked incoming phone calls.
18	Details of Emergency actions	The smoke was observed in the chemical sewer.
		 First information given by security guard to HSE&S Manager.
		 Incident Controller raised emergency siren after getting confirmation from Site Controller.
		Shift in charge with production operator applied hydrant water in chemical sewer to control the smoke.
		Chief Incident Controller was assisting to emergency team.

		 Smoke formation was under control after applying water in chemical sewer. CIC addressed to employees and contractors at Assembly point 1 on nature of emergency and actions taken during emergency. 		
20	Whether head count was tallied with gate entries?	Head count matched		
21	Was external help was called? Give details?	No external help was taken.		
22	Positive observations during the emergency - Security guard observe the smoke and given information to HSE&S Manager. - Both production operator, shift in charge & fitter were involved for firefighting. - All the site key personnel shifted there walky talky sets on channel No. 1 - Emergency vehicle reached at Assembly point 1.			
23	Improvement areas noticed with respect - Nil	ive to the plan		
24	Action plan for improvement To discuss in HSES committee meeting.			


Sanjay Salunke

Amit Salagare
Chief incident controller

Observer

Ninad Kawathekar Site controller

M/s Nouryon Chemicals India Pvt. Ltd. (Formerly M/s Akzo Nobel India Limited) E- 18, 19, 20 & C-61 (Part), MIDC Mahad, District Raigad, Maharashtra.

Schematic Representation of organizational structure of Environment Management

Plot No. A-95, Road No. 16, Kisan Nagar Road, M.I.D.C. Wagle Industrial Area, Thane - 400 604, Maharashtra State, India (2): (91-22) 2583 3321 / 2583 3322 / 2583 3323 / 2583 3324 • E-mail: prs@sadekarenviro.com / psadekar5@gmail.com

Gazetted By Ministry of Environment, Forest & Climate Change, Govt Ol India, S. O. 857 (E). Valid upto 25.02 2023 * OCI-NABET. Accredited EIA Consultancy

Lab. accredited by NABL, Valid up to 26.03.2020 ★ Certified by ISO 9001:2015 & BS OHSAS 18001 : 2007

ANALYSIS TEST REPORT	FOR AMBIENT	AIR QUALITY	MONITORING REPORT

****		Report Date	20/12/2019	
Name of Client	M/s. Nouryon Chemicals India Pvt Ltd.			
Address of Client	Plot No. E-18/19/20, 61 (Part), MIDC Mahad, Dist-Raigad. 402302, Maharashtra.			
Order / Reference	PO No. 4500907916, Dated	3-22,08,2019		
Date Of Sampling	13/12/2019	Sample Receipt Date	14/12/2019	
Analysis Started on	16/12/2019	Analysis Completed On	20/12/2019	
ULR No	TC708619000002150F			
Report No	SEETL/AR/12/19/262			
Sample Collected By	SEETL Representative	Sampling Duration	24 Hours	
Environmental Condition of Lab		Temperature(°C) 24.9	Humidity (%) 55	
	ANADIENT A	ID STATION	·	

AMBIENT AIR STATION

Location of H.V.S.	Near Changing Room		_		
Lateral Distance	5.0 Meter From Changing Room				
Receptor Distance	1.5 Meters From Ground Level				
Ambient Temperature (°C)	27	Humidity (%)	57		
Wind Speed (km/hr)	11	Wind Direction (deg ⁰)	W,258		
Instruments Used	R.D.S.(APM- 460), F.P.S.(APM ~ 550) & G.P.S.(APM – 411)				

POLLUTIONAL PARAMETERS

		10220	710107107711		
Parameters	Result	Units	NAAQS Limits	Method	
PM ₁₀	62	μg/m³	100.00	IS 5182 (Part 23): 2006 (RA 2012)	
PM _{2.5}	31	μg/m³	60.00	EPA Quality assurance guidance document 2 based on CPCB- 2011	
SO ₂	18	μg/m³	80.00	IS 5182 (Part 2): 2001 (RA 2012)	
NOx	27	μg/m³	80.00	IS 5182 (Part 6): 2006 (RA 2012)	
Ammonia (NH ₃)	<20	μg/m³	400.00	Method No. 401 Based on Methods of Air Sampling and analysis-3 rd edition by J P Lodge	
CO	0.87	mg/m³	04.00	NDIR IS 5182 (Part 10) C : 1999 (RA 2014)	
Lead as Pb	<0.1	μg/m³	01.00	EPA compendium method IO 3.5	
Benzene (C ₆ H ₆)	< 1	μg/m³	5.00	IS 5182 (Part 11) :2006 (RA 2012)	
Arsenic(As)	< 5	ng/m³	6.00	EPA compendium method IO 3.5	
Nickel(Ni)	< 5	ng/m³	20.00	EPA compendium method IO 3.5	
Ozone (O ₃)	22	μg/m³	180.00	IS 5182 (Part IX): 1974	
Benzo(a)Pyrene	< 0.025	ng/m³	1.00	IS 5182 (Part 12): 2004 (RA 2014)	

NOTE: 1) The above results relate only to the condition prevailing at the time of Sampling.

- 2) The above results relate only to the item tested.
- 3) PM₁₀-Particulate Matter of size < 10 μm
- 4) PM_{2.5} Particulate Matter of size < 2.5 μm
- 5) NAAQS-National Ambient Air Quality Standards Eno

Authorized Signatory Nilesh Naik

BRANCH OFF. : 310, Dempo Towers, EDC Patio, Panaji-403 001. Goa State, India 🛈 : (0832) 2437048 / 2437164

Jonifical by:

Malumi

164 : B-306/307, Plot No. 61, Patel Estate, Reis Magos, Verem, Alto, Old Betim Road, Bardez, Porvorim, Panaji-Goa-403 vo Goa State, India. ⑦ : (0832) 2411322 / 23 ● E-mail : starlabgoa@rediffmail.com ● CIN No. U45209MH1998PTC-116379 LABORATORY

E-mail: sadekarenviro@rediffmail.com • Websile | www.sadekarenviro.com

Plot No. A-95, Road No. 16, Kisan Nagar Road, M LD C. Wagle Industrial Area, Thane - 400 604. Maharashtra State, India ② : (91-22) 2583 3321 / 2583 3322 / 2583 3322 / 2583 3322 / 2583 3323 / 2583 3324 • E-mail pro@sadekarenviro.com / psadekar5@gmail.com

Gazetted By Ministry of Environment, Forest & Climate Change. Govt Of India, S. D. 857 (E), Valid upto 25.02.2023 * QCI-NABET Accredited EIA Consultancy

Lab. accredited byNRBL, Valid up to 26.03.2020 ★ Certified by ISO 9001:2015 & BS OHSAS 18001 : 2007

				Report Date	20/12/2019	
Name of Client	M/s.	M/s. Nouryon Chemicals India Pr		Pvt Ltd.		
Address of Client	Plot N	Plot No. E-18/19/20, 61 (Part), M		AIDC Mahad, Dist-Raigad. 4	02302, Maharashtra.	
Order / Reference	PO N	PO No. 4500907916, Dated-22.08		08.2019		
Date Of Sampling	13/12	/2019		Sample Receipt Date	14/12/2019	
Analysis Started on	16/12	/2019		Analysis Completed On 20/12/2019		
ULR No	TC70	36190000021	51F			
Report No	SEETI	/AR/12/19/2	163			
Sample Collected By	SEETS	Representat	ive	Sampling Duration	24 Hours	
Environmental Conditi	on of Lab			Temperature(°C) 24.9 Humidity (%)		
		AM	BIENT AIR ST	ATION		
Location of H.V.S.	Near	Tyte-5		1 - 1		
Lateral Distance	5.0 N	eter From Ty	te-S			
Receptor Distance		eters From G	round Level			
Ambient Temperature	(°C) 27			Humidity (%)	57	
Wind Speed (km/hr)	11	11		Wind Direction (deg ⁰)	W,258	
Instruments Used	R.D.S			550) & G.P.S.(APM - 411)		
		POLLU	JTIONAL PAR	AMETERS		
Parameters	Result	ult Units NAAQS Method		thod		
PM ₁₀	67	μg/m³	100.00	IS 5182 (Part 23): 2006 (RA 2012)		
PM _{2.5}	36	μg/m³	60.00	EPA Quality assurance guidance document 2. based on CPCB- 2011		
SO ₂	21	21 μg/m³ 80.00		IS 5182 (Part 2): 2001 (RA 2012)		
NOx	33	μg/m³	80.00	IS 5182 (Part 6): 2006 (RA 2012)		
Ammonia (NH ₃)	<20	μg/m³	400.00	Method No. 401 Based on Methods of Air Sampling and analysis-3 rd edition by J P Lodge		
со	0.96					
Lead as Pb	<0.1	μg/m³	01.00	EPA compendium method IO 3.5		
Benzene (C ₆ H ₆)	< 1	μg/m³	5.00	IS 5182 (Part 11) :2006 (RA 2012)		
Arsenic(As)	< 5	ng/m³	6.00	EPA compendium method IO 3.5		
Nickel(Ni)	< 5	ng/m³	20.00	EPA compendium method IO 3.5		
Ozone (O ₃)	26	µg/m³	180.00	IS 5182 (Part IX): 1974		
Benzo(a)Pyrene	< 0.025	< 0.025 ng/m ³ 1.00		IS 5182 (Part 12): 2004(RA 2014)		

NOTE: 1) The above results relate only to the condition prevailing at the time of Sampling.

- 2) The above results relate only to the item tested.
- 3) PM₁₀-Particulate Matter of size < 10 µm
- 4) PM_{2.5} Particulate Matter of size < 2.5 μm
- 5) NAAQS-National Ambient Air Quality Standards

Authorized Signatory Nilesh Naik

BRANCH OFF. : 310, Dempo Towers, EDC Patto, Panaji-483 001. Goa State, India © : (0832) 2437048 / 2437164 E-mail : sadekarenviro@rediffmail.com • Website : www.sadekarenviro.com

LABORATORY: 8-305/307, Plot No. 61, Patel Estate. Reis Magos, Verem, Alto, Old Betim Road, Bardez, Porvorim, Panaji-Goa-40, 10 Goa State, India. (?): (0832) 2411322 / 23 • E-mail: starlabgoa@rediffmail.com • CIN No. U45209MH1998PTC-116 V9

Thane

Veritary Cy:

Plot No. A-95, Road No. 16, Kisan Nagar Road, M.I.O.C. Wagle Industrial Area, Thane - 400 604, Maharashtra State, India © : (91-22) 2583 3321 / 2583 3322 / 2583 3323 / 2583 3324 * E-mail : prs@sadekarenviro.com / psadekar5@gmail.com

Gazetted By Ministry of Environment, Forest & Climate Change, Govt Of India, S. O. 857 (E), Valid upto 25-02.2023 * QGI-NABET: Accredited EIA Consultancy

Lab. accredited by NABL, Valid_up to 26.03.2020 ★ Certified by ISO 9001:2015 & BS OHSAS 18001 : 2007

AN.	ALYSIS TES	FREPORT FOR A	AMBIENT AIR	QUALITY MONITORING	REPORT	
				Report Date	20/12/2019	
Name of Client	M/:	. Nouryon Che	micals India	Pvt Ltd.		
Address of Client	Plot	No. E-18/19/2	0, 61 (Part), N	MIDC Mahad, Dist-Raigad.	402302, Maharashtra.	
Order / Reference	PO	No. 450090791	6, Dated-22.	08.2019		
Date Of Sampling	13/	12/2019		Sample Receipt Date 14/12/2019		
Analysis Started on	16/	16/12/2019		Analysis Completed On	20/12/2019	
ULR No	TC7	TC708619000002152F				
Report No	SEE	TL/AR/12/19/2	64			
Sample Collected By	SEE	Tl. Representati	ive	Sampling Duration	24 Hours	
Environmental Conditi	ion of Lab			Temperature(°C) 24.9	Humidity (%) 55	
	· · · · · · · · · · · · · · · · · · ·	AM	BIENT AIR ST		30	
Location of H.V.S.	Nea	r Old ETP				
Lateral Distance	5.0	5.0 Meter From Old ETP				
Receptor Distance		1.5 Meters From Ground Level				
Ambient Temperature	re (°C) 27			Humidity (%)	57	
Wind Speed (km/hr)	11	11		Wind Direction (deg ⁰)	W,258	
Instruments Used	uments Used R.D.S.(APM- 460), F.P.S.(APM					
		POLLU	TIONAL PAR	AMETERS		
Parameters	Result		NAAQS Limits	Method		
PM ₁₀	76	μg/m³	100.00	IS 5182 (Part 23): 2006 (RA 2012)		
PM _{2.5}	39	μg/m³	60.00	EPA Quality assurance guidance document 2.1 based on CPCB- 2011		
SO ₂	26	μg/m³	80.00	IS 5182 (Part 2): 2001 (RA 2012)		
NO _x	40	μg/m³	80.00	IS 5182 (Part 6): 2006 (RA 2012)		
Ammonia (NH ₃)	<20	μg/m³	400.00	Method No. 401 Based on Methods of Air Sampling and analysis-3 rd edition by J.P. Lodge		
CO	1.14	mg/m³	04.00	NDIR IS 5182 (Part 10) C : 1999 (RA 2014)		
Lead as Pb	<0.1	μg/m³	01.00	EPA compendium method IO 3.5		
Benzene (C ₆ H ₆)	< 1	μg/m³	5.00	IS 5182 (Part 11) :2006 (RA 2012)		
Arsenic(As)	< 5	ng/m³	6.00	EPA compendium method IO 3.5		
Nickel(Ni)	< 5	ng/m³	20.00	EPA compendium method IO 3.5		
Ozone (O ₃)	29	μg/m³	180.00	IS 5182 (Part IX): 1974		

NOTE: 1) The above results relate only to the condition prevailing at the time of Sampling.

1.00

ng/m³

- 2) The above results relate only to the item tested.
- 3) PM₁₀-Particulate Matter of size < 10 µm

Benzo(a)Pyrene

4) PM_{2.5} - Particulate Matter of size < 2.5 μm

< 0.025

5) NAAQS-National Ambient Air Quality Standards

Authorized Signatory Nilesh Naik

IS 5182 (Part 12): 2004 (RA 2014)

BRANCH OFF. : 310, Dempo Towers, EDC Patto, Panaji-403 001. Goa State, India © : (0832) 2437048 / 2437164 E-mail: sadekarenviro@rediffmail.com * Website: www.sadekarenviro.com

: B-306/307, Plot No. 61, Patel Estate, Reis Magos, Verem, Allo, Old Betim Road, Bardez, Porvorim, Panaji-Goa-4/3 16 Goa State, India. (7): (0832) 2411322 / 23 • E-mail : starlabgoa@rediffmail.com • CIN No. U45209MH1998PTC-114379 LABORATORY

wined by:

Sadekar Enviro Engineers Pvt. Ltd.

Plot No. A-95, Road No. 16, Kisan Nagar Road, M.I.D.C. Wagle Industrial Area, Thane - 400 604. Maharashtra State, India © : (91-22) 2583 3321 / 2583 3322 / 2583 3323 / 2583 3324 * E-mail : prs@sadekarerviro.com / psadekar5@gmail.com

Lab. accredited by NABL, Valid up to 26.03.2020 ★ Certified by ISO 9001;2015 & BS OHSAS 18001 : 2007

ANALYSIS TEST REPORT FOR STACK EMISSION

	<u> </u>		Report Date		20/12/2019	
Name of Client		ryon Chemicals India		_		
Address of Client	Plot No.	Plot No. E-18/19/20, 61 (Part), MIDC Mahad, Dist-Raigad. 402302, Maharashtra.				
Order / Reference	PO No. 4	500907916, Dated-22	2.08.2019			
Date Of Sampling	13/12/20	119	Sample Receipt Date	e	14/12/2019	
Analysis Started on	16/12/20)19	Analysis Completed	On	20/12/2019	
ULR No	TC70861	9000002153F				
Report No	SEETL/ST	7/12/19/265				
Sample Collected By	SEETL Re	presentative				
Environmental Condition	n of Lab		Temperature(°C)	24.9	Humidity (%)	55
		DETAILS O	F STACK			
Attached To		DG Set 500 KVA				
Shape		Round	Round			
Diameter (Mtr)		0.15		<u></u>		
Height From Ground Level (Mtr)		10 Mtr				
Temperature (°C)		145				
Velocity of Flue Gases (I	m/sec)	9.22				
Volume of Flue Gases (f	lm³/hour)	586.25				
Type of Fuel	Type of Fuel HSD					

POLLUTIONAL PARAMETERS

Parameters	Result	Units	MPCB Limit	Method
Total Particulate Matter	41	mg/Nm³	150.00	IS 11255 Part 1-1985 Reaff.
SO ₂	0.7	Kg/Day	-	IS 11255 Part 2-1985 Reaff.
Oxides of Nitrogen (NOx)	48	mg/Nm³	-	IS 11255 Part 7-2005 RA.2012

NOTE: 1) The above results relate only to the condition prevailing at the time of Sampling.

2) The above results relate only to the item tested.

Authorized Signatory Nilesh Naik

BRANCH OFF. : 310, Dempo Towers, EDC Patto, Panaji-403 001, Goa State, India (0): (0832) 2437048 / 2437164 E-mail: sadekarenviro@rediffmail.com • Website: www.sadekarenviro.com

: 8-306/307, Ptot No. 61, Patel Estate, Reis Magos, Verem, Alto, Old Betirn Road, Bardez, Porvorim, Panaji-Goa-403 101. LABORATORY Goa State, India. (): (0832) 2411322 / 23 * E-mail: starlabgoa@rediffmail.com * CIN No. U45209MH1998PTC-116379

Variable (filenus)

Sadekar Enviro Engineers Pvt. Ltd.

Plot No. A-95, Road No. 16, Kisan Nagar Road, M.I.D.C. Wagte Industrial Area, Thana - 400 604. Maharashtra State, India ② : (91-22) 2583 3321 / 2583 3322 / 2583 3323 / 2583 3324 ◆ E-mail : prs@sadekarenviro.com / psadekar5@gmail.com

Lab, accredited by N#BL, Valid up to 26.03.2020 ★ Certified by ISO 9001:2015 & BS OHSAS 18001 : 2007

ANALYSIS TEST REPORT FOR STACK EMISSION

		Report Date	20/12/2019		
Name of Client	M/s. Nouryon Chemicals				
Address of Client	Plot No. E-18/19/20, 61 (Plot No. E-18/19/20, 61 (Part), MIDC Mahad, Dist-Raigad. 402302, Maharashtra.			
Order / Reference	PO No. 4500907916, Dat	ed-22.08.2019			
Date Of Sampling	13/12/2019	Sample Receipt Date	14/12/2019		
Analysis Started on	16/12/2019	Analysis Completed On	20/12/2019		
ULR No	TC708619000002154F				
Report No	SEETL/ST/12/19/266-26	7			
Sample Collected By	SEETL Representative				
Environmental Condition	n of Lab	Temperature(°C)	Humidity (%)		

Environmental Condition of Lab

DETAILS OF STACK						
Attached To	Diesel Engine-1	Diesel Engine -2				
Shape	Round	Round				
Diameter (Mtr)	0.1 Mtr	0.0762 Mtr				
Height From Ground Level (Mtr)	6.5	6.0				
Temperature (°C)	178	151				
Velocity of Flue Gases (m/sec)	9.97	9.42				
Volume of Flue Gases (Nm³/hour)	281.85	154.61				
Type of Fuel	HSD	HSD				

POLLUTIONAL PARAMETERS

Parameters	Result		Units	MPCB	Method
ĺ	l	u		Limit	
Total Particulate Matter	29	26	mg/Nm³	150.00	IS 11255 Part 1-1985 Reaff.
\$O ₂	0.2	0.2	Kg/Day	-	IS 11255 Part 2-1985 Reaff.
Oxides of Nitrogen (NOx)	37	32	mg/Nm³	-	IS 11255 Part 7-2005 RA.2012

NOTE: 1) The above results relate only to the condition prevailing at the time of Sampling.

2) The above results relate only to the item tested.

Authorized Signatory Nilesh Naik voined by:

: 310, Dempo Towers, EDC Patto, Panaji-403 001. Goa State, India ①: (0832) 2437048 / 2437164 BRANCH OFF. E-mail: sadekarenviro@rediffmail.com • Website: www.sadekarenviro.com

: 8-305/307, Plot No. 51, Patel Estate, Reis Magos, Verem, Alto, Old Betim Road, Bardez, Porvorim, Panaji-Goa-403 101. LABORATORY Goa State, India. Ø: (0832) 2411322 / 23 ● E-mail: startabgoa@rediffmail.com ● CIN No. U45209MH1998PTC-116379

Sadekar Enviro Engineers Pvt. Ltd.

Plot No. A-95, Road No. 16, Kisan Nagar Road, M.I.D.C. Wagle Industrial Area, Thene - 400 604. Maharashira State, India ♠ : (91-22) 2583 3321 / 2583 3322 / 2583 3323 / 2583 3324 * E-mail : prs@sadekarenviro.com / psadekar5@gmail.com

SAVE WATER SAVE LIFE

Gazetted By Ministry of Environment, Forest & Climate Change, Govt Of India, S. O. 857 (E), Valid upto 25.02 2023 * QCI-NABET Accredited EIA Consultancy

Lab. accredited by NRBL, Valid up to 26.03.2020 ★ Certified by ISO 9001:2015 & BS OHSAS 18001 : 2007

ANALYSIS TEST REPORT FOR STACK EMISSION

			Report Date	20/12/2019	
Name of Client	M/s. No	uryon Chemicals Inc	lia Pvt Ltd.		
Address of Client	Plot No.	Plot No. E-18/19/20, 61 (Part), MIDC Mahad, Dist-Raigad. 402302, Maharashtra.			
Order / Reference	PO No. 4	500907916, Dated-	22.08.2019		
Date Of Sampling	13/12/20	019	Sample Receipt Date	14/12/2019	
Analysis Started on	16/12/2019		Analysis Completed On	20/12/2019	
Report No	SEETL/ST/12/19/268				
Sample Collected By	SEETL Re	presentative			
Environmental Conditio	n of Lab		Temperature(°C)	Humidity (%)	
		DETAILS	DF STACK		
Attached To		Scrubber (Product	ion Plant)		
Shape		Round			
Diameter (Mtr)	-	0.5			

Attached To	Scrubber (Production Plant)
Shape	Round
Diameter (Mtr)	0.5
Height From Ground Level (Mtr)	16
Temperature (°C)	30
Velocity of Flue Gases (m/sec)	3.32
Volume of Flue Gases (Nm³/hour)	2349.98
Type of Fuel	-

POLLUTIONAL PARAMETERS

Parameters	Result	Units	MPCB Limit	Method
Acid Mist*	16	mg/Nm³	35.0	Lab SOP No. SEETL/LD/SOP/AA-31

NOTE: 1) The above results relate only to the condition prevailing at the time of Sampling.

- 2) The above results relate only to the item tested.
- 3) * This Parameter is not included in NABL scope.

Authorized Signatory Nilesh Naik

BRANCH OFF. : 310, Dempo Towers, EDC Patto, Panaji-403 001. Goa State, India © : (0832) 2437048 / 2437164 E-mail : sadekarenviro@rediffmail.com • Website : www.sadekarenviro.com

: 8-306/307, Plot No. 61, Patel Estate, Reis Magos, Verem, Alto, Old Betim Road, Bardez, Porvorim, Panaji-Goa-403 184. LABORATORY Goa State, India. (): (0832) 2411322 / 23 • E-mail . starlabgoa@rediffmail.com • CIN No. U45209MH1998PTC-116379

variable by.

- *** ENVIRONMENTAL TESTING**
- FOOD & MICROBIOLOGICAL TESTING
- **# TEXTILE TESTING**
- METALS, CHEMICAL TESTING
- **TURNKEY, ENVIRONMENT CONSULTANCY**
- * SHE AUDIT & TRAINING

ULR NO.TC051501800003846P

Water Report

Report No.:	SAL/FM/61/NCIM/WW(19-20-0719)	Report Date:	31/10/2019
Name & Address of the	M/s. Nouryon Chemicals India Pvt. Ltd.	Sample ID:	WW(19-20-0719)
Client/Customer:	Plot E= 18,19,20 & C-61(Part) Mahad, Dist Raigad,	Sampling Location:	ETP Outlet
	Maharashtra, INDIA	Type of Sample:	Waste Water
Work Order/PO Reference Number:	6200436496 dtd.16.03.2019	Date of Sampling:	19/10/2019
Sample Collected By:	SKYLAB	Date-Receipt of Sample:	22/10/2019
sample quantity:	2 L	Date-Start or Analysis:	22/10/2019
Job Order No:	NA	Date-Complete Analysis:	31/10/2019

Result Of Analysis

Sr. No.	Parameters	Units	Result	Reference Method
1	pH	-	7.43	IS 3025 (Part 11), RA Aug 2017: 1983
2	Total suspended solids	mg/L	94	IS 3025 (Part 17), RA Aug 2017: 1984
3	Total dissolved solids	mg/L	2078	IS 3025 (Part 16), RA Aug 2017: 1984
4	Chemical Oxygen Demand (COD)	mg/L	105	IS 3025 (Part 58), RA Aug 2017: 2006
5	Biochemicał Oxygen Demand (BOD) 3 Days @ 27°C	mg/L	28	IS 3025 (Part 44), RA 2014: 1993
5	Oil & Grease	mg/L	5	IS 3025 (Part 39), RA 2014: 1991
7	Sulphate, SO4	mg/L	347	IS 3025 (Part 24), RA 2014: 1986
8	Chloride	mg/L	1221	IS 3025 (Part 32), RA 2014: 1988
9	Ammonical Nitrogen	mg/L	<0.1	IS 3025 (Part 34), RA 2014: 1988
10	Percent Sodium	%	<0.1	APHA 23rd Ed. 3500-Na B
11	Phenolic compounds	rng/L	<0.001	IS 3025 (Part 43), RA 2014: 1992
12	Phosphate (total)	mg/L	0.3	IS 3025 (Part 31), RA 2014: 1988
13	Sulphide	mg/L	<0.1	IS 3025 (Part 29), RA 2014: 1986
14	Metal-Chromium	mg/L	<0.05	IS 3025 (Part 52), RA 2014: 2003
15	Bioassay Test	%	95	APHA 23rd Ed. 3112 B

For SKYLAB ANALYTICAL LABORATORY, KALYAN

Prepared By

Admin Executive

AUTHORISED SIGNATORY

--End Of Report-----

1. This report reflects our findings at the time and place of monitoring/testing.
2. Test results are based on and related only to the particular sample(s) monitored/tested.

3. This report is confidential & cannot be re-produced.

4. Any attempt of forgery or misleading use of this report by any person/organization etc will attract, suitable legal action against them by Skylab Analytical Caboratory.

Accredited by NABL as per ISO 17025:2017, Certified by ISO 9001:2015 & OHSAS 18001:2007

Recognized by MoEFCC, Govt. of India, valid from 18.02.2019

1st Floor, Chintamani Smriti, Next to Phadke Hospital, Parnaka, Kalyan (W) 421301, Dist. Thane, Maharashtra, INDIA. Mob. No. - 9820386785 / 9867577309 - 312 / 84222929165

- ENVIRONMENTAL TESTING
- **FOOD & MICROBIOLOGICAL TESTING**
- TEXTILE TESTING
- METALS, CHEMICAL TESTING
- **TURNKEY, ENVIRONMENT CONSULTANCY**
- SHE AUDIT & TRAINING

ULR NO.TC051501800004946P

TEST REPORT

NAME & ADDRESS OF CUSTOMER:

M/s. Nouryon Chemicals India Pvt. Ltd.

Plot E- 18,19,20 & C-61(Part) Mahad, Dist.- Raigad, Maharashtra, INDIA

REPORT NO

: SAL/FM/61/NCIM/WW(19-20-0811)

REPORT DATE : 30/11/2019 **CUSTOMER REF: 4500968182 REF DATE**

:23/12/2019

SAMPLE TYPE:

SAMPLE REGISTRATION NO. : WW(19-20-0811)

SAMPLING PLAN& METHOD NO.: IS 3025 Part 1:1987 RA 2019 : 19/11/2019

SAMPLING DATE SAMPLE RECEIPT DATE ANALYSIS START DATE

:20/11/2019 : 20/11/2019 **EFFLUENT WATER ANALYSIS**

LOCATION

: ETP Outlet

SAMPLE SPECIFICATION: Waste Water

SAMPLE COLLECTED BY: SKYLAB SAMPLE QUANTITY :2 ltrs

Sr. No.	Test Parameter	Unit	Result	Reference Method
1	pH	-	7.40	IS 3025 (Part 11), RA Aug 2017: 1983
2	Total suspended solids	mg/L	7	IS 3025 (Part 17), RA Aug 2017: 1984
3	Total dissolved solids	mg/L	1970	IS 3025 (Part 16), RA Aug 2017: 1984
4	Chemical Oxygen Demand (COD)	mg/L	213	IS 3025 (Part 58), RA Aug 2017: 2006
5	Biochemical Oxygen Demand (BOD)	mg/L	50	IS 3025 (Part 44), RA 2014: 1993
6	Oil & Grease	mg/L	<5	15 3025 (Part 39), RA 2014: 1991
7	Sulphate, SO4	mg/L	103	IS 3025 (Part 24), RA 2014: 1986
8	Chloride	mg/L	592	IS 3025 (Part 32), RA 2014: 1988
9	Ammonical Nitrogen	mg/L	1	iS 3025 (Part 34), RA 2014: 1988
10	Percent Sodium	%	<0.01	is 3025 (Part 45), RA 2014: 1993
11	Phenolic compounds	mg/L	<0.001	IS 3025 (Part 43), RA 2014: 1992
12	Phosphate (total)	mg/L	<0.1	IS 3025 (Part 31), RA 2014: 1988
13	Sulphide	mg/L	<0.1	IS 3025 (Part 29), RA 2014: 1986
14	Metal-Chromium	mg/L	<0.05	IS 3025 (Part 52), RA 2014: 2003
15	Bioassay Test	%	93	APHA 23rd Ed. 3112 B

For SKYLAB ANALYTICAL LABORATORY

Authorized Signatory

END OF REPORT

1. This report reflects findings only for the above sample tested/monitored and only for time and place of monitoring/testing.

2. This report is confidential & cannot be re-produced in part or full without permission of SKYLAB Analytical Laboratory.

3. Any attempt of forgery or misleading use of this report by any person/organization etc will attract suitable legal action against them by Skylab Analytical Liborator

Page 1 of 1

- ENVIRONMENTAL TESTING
- . FOOD & MICROBIOLOGICAL TESTING
- TEXTILE TESTING
- . METALS, CHEMICAL TESTING
- TURNKEY, ENVIRONMENT CONSULTANCY
- . SHE AUDIT & TRAINING

: SAL/FM/61/NCIM/WW(19-20-0877)

ULR NO.TC051501800005338P

TEST REPORT

NAME & ADDRESS OF CUSTOMER:

M/s. Nouryon Chemicals India Pvt. Ltd.

Plot E- 18,19,20 & C-61(Part)

Mahad, Dist.- Raigad,

Maharashtra, INDIA SAMPLE TYPE:

SAMPLING DATE

REF DATE : NA

EFFLUENT WATER ANALYSIS

REPORT DATE : 21/12/2019

CUSTOMER REF : Verbal

LOCATION

: ETP Outlet

REPORT NO

....

SAMPLE SPECIFICATION: Waste Water

SAMPLE COLLECTED BY: SKYLAB SAMPLE QUANTITY :2 Ltrs

SAMPLE RECEIPT DATE
ANALYSIS START DATE

:10/12/2019

: WW(19-20-0877)

:11/12/2019

SAMPLING PLAN& METHOD NO.: IS 3025 Part 1:1987 RA 2019

ANALYSIS COMPLETE DATE

SAMPLE REGISTRATION NO.

:21/12/2019

Sr. No.	Test Parameter	Unit	Result	Limit*	Reference Method
1	pH		7.56	6.5-8.5	IS 3025 (Part 11), RA Aug 2017: 1983
2	Total suspended solids	mg/L	10	100	IS 3025 (Part 17), RA Aug 2017: 1984
3	Total dissolved solids	mg/L	2075	2100	IS 3025 (Part 16), RA Aug 2017: 1984
4	Chemical Oxygen Demand (COD)	mg/L	243	250	IS 3025 (Part 58), RA Aug 2017: 2006
5	Biochemical Oxygen Demand (BOD)	mg/L	85	100	IS 3025 (Part 44), RA 2014: 1993
6	Oil & Grease	mg/L	<5	10	IS 3025 (Part 39), RA 2014: 1991
7	Sulphate, SO4	mg/L	98	1000	IS 3025 (Part 24), RA 2014: 1986
8	Chloride	mg/L	579	600	IS 3025 (Part 32), RA 2014: 1988
9	Ammonical Nitrogen	mg/L	<0.5	50	IS 3025 (Part 34), RA 2014: 1988
10	Percent Sodium	%	<0.1	60	IS 3025 (Part 45), RA 2014: 1993
11	Phenolic compounds	mg/L	<0.001	5.0	IS 3025 (Part 43), RA 2014: 1992
12	Phosphate (total)	mg/L	2	5	IS 3025 (Part 31), RA 2014: 1988
13	Sulphide	mg/L	<0.1	2	IS 3025 (Part 29), RA 2014: 1986
14	Metal-Chromium	mg/L	<0.05	0.10	15 3025 (Part 52), RA 2014: 2003
15	Bioassay Test	%	93%	90% survival of fish after 96 hours in 100% effluent	APHA 23rd Ed. 3112 B

^{*:} As per MPCB Consent

Opinion/Observation: Analyzed parameters in above tested sample are within limit as per specified standard.

For SKYLAB ANALYTICAL LABORATORY

Authorized Signator

END OF REPORT

1. This report reflects findings only for the above sample tested/monitored and only for time and place of monitoring/testing.

2. This report is confidential & cannot be re-produced in part or full without permission of SKYLAB Analytical Laboratory.

3. Any attempt of forgery or misleading use of this report by any person/organization etc will attract suitable legal action against them by Skylab Analytical Labor

Page 1 of 1

- **ENVIRONMENTAL TESTING**
- FOOD & MICROBIOLOGICAL TESTING
- **TEXTILE TESTING**
- . METALS, CHEMICAL TESTING
- **TURNKEY, ENVIRONMENT CONSULTANCY**
- SHE AUDIT & TRAINING

ULR NO.TC051501800005848P

TEST REPORT

NAME & ADDRESS OF CUSTOMER:

M/s. Nouryon Chemicals India Pvt. Ltd.

Plot E- 18,19,20 & C-61(Part)

Mahad, Dist.- Raigad, Maharashtra, INDIA _____

REPORT NO : SAL/FM/61/NCIM/WW(19-20-1023)

REPORT DATE : 27/01/2020 CUSTOMER REF : 4500968182

REF DATE : 23/12/2019

SAMPLE TYPE:

SAMPLE REGISTRATION NO. : WW(19-20-1023)

SAMPLING PLAN& METHOD NO.: IS 3025 Part 1:1987 RA 2019

SAMPLING DATE

SAMPLE RECEIPT DATE
ANALYSIS START DATE
ANALYSIS COMPLETE DATE

: 17/01/2020 : 17/01/2020 : 18/01/2020 : 27/01/2020

EFFLUENT WATER ANALYSIS

LOCATION : ETP Outlet

SAMPLE SPECIFICATION: Waste Water

SAMPLE COLLECTED BY: SKYLAB
SAMPLE QUANTITY :2 Ltrs

Sr. No.	Test Parameter	Unit	Result	Limit"	Reference Method
1	рН		7.85	6.5-8.5	IS 3025 (Part 11), RA Aug 2017: 1983
2	Total suspended solids	mg/L	32	100	IS 3025 (Part 17), RA Aug 2017: 1984
3	Total dissolved solids	mg/L	1948	2100	IS 3025 (Part 16), RA Aug 2017: 1984
4	Chemical Oxygen Demand (COD)	mg/L	239	250	IS 3025 (Part 58), RA Aug 2017: 2006
5	Biochemical Oxygen Demand (BOD)	mg/L	68	100	IS 3025 (Part 44), RA 2014: 1993
6	Oil & Grease	mg/L	<5	10	IS 3025 (Part 39), RA 2014: 1991
7	Sulphate, SO4	mg/L	166	1000	IS 3025 (Part 24), RA 2014: 1986
8	Chloride	mg/L	1505	600	IS 3025 (Part 32), RA 2014: 1988
9	Ammonical Nitrogen	mg/L	<0.5	50	IS 3025 (Part 34), RA 2014: 1988
10	Percent Sodium	%	<0.1	60	IS 3025 (Part 45), RA 2014: 1993
11	Phenolic compounds	mg/L	<0.001	5.0	IS 3025 (Part 43), RA 2014: 1992
12	Phosphate (total)	mg/L	<0.1	5	IS 3025 (Part 31), RA 2014: 1988
13	Sulphide	mg/L	<0.1	2	IS 3025 (Part 29), RA 2014: 1986
14	Metal-Chromium	mg/L	<0.05	0.10	IS 3025 (Part 52), RA 2014: 2003
15	Bioassay Test	%	94	90% survival of fish after 96 hours in 100% effluent	APHA 23rd Ed. 3112 B

[&]quot;: As per MPCB Consent

Opinion/Observation: Analyzed parameters in above tested sample are within limit as per specified standard.

For SKYLAB ANALYTICAL LABORATORY

Authorized Signatory

END OF REPORT

- 1. This report reflects findings only for the above sample tested/monitored and only for time and place of monitoring/testing.
- 2. This report is confidential & cannot be re-produced in part or full without permission of SKYLAB Analytical Laboratory.
- 3. Any attempt of forgery or misfeading use of this report by any person/organization etc will attract suitable legal action against them by Skylab Analytical Lab // to/

- **ENVIRONMENTAL TESTING**
- **FOOD & MICROBIOLOGICAL TESTING**
- **TEXTILE TESTING**
- **METALS, CHEMICAL TESTING**
- TURNKEY, ENVIRONMENT CONSULTANCY
- **SHE AUDIT & TRAINING**

TEST REPORT

: SAL/FM/61/NCIM/WW(19-20-1272) NAME & ADDRESS OF CUSTOMER: **REPORT NO**

M/s. Nouryon Chemicals India Pvt. Ltd. **REPORT DATE** : 08/04/2020 Plot E- 18,19,20 & C-61(Part) **CUSTOMER REF:** 4500968182

Mahad, Dist.- Raigad, **REF DATE** : 23/12/2019 Maharashtra, INDIA

SAMPLE TYPE:

EFFLUENT WATER ANALYSIS

SAMPLE REGISTRATION NO. : WW(19-20-1272) **LOCATION** : ETP Outlet SAMPLING PLAN& METHOD NO.: IS 3025 Part 1:1987 RA 2019

SAMPLE SPECIFICATION: Waste Water : 18/03/2020 **SAMPLING DATE SAMPLE RECEIPT DATE** : 19/03/2020 **SAMPLE COLLECTED BY: SKYLAB SAMPLE QUANTITY ANALYSIS START DATE** : 19/03/2020 :2 Ltrs

ANALYSIS COMPLETE DATE :08/04/2020

Sr. No.	Test Parameter	Unit	Result	Limit [#]	Reference Method
1	рН	-	8.14	6.5-8.5	IS 3025 (Part 11), RA Aug 2017: 1983
2	Total suspended solids	mg/L	43	100	IS 3025 (Part 17), RA Aug 2017: 1984
3	Total dissolved solids	mg/L	1842	2100	IS 3025 (Part 16), RA Aug 2017: 1984
4	Chemical Oxygen Demand (COD)	mg/L	234	250	IS 3025 (Part 58), RA Aug 2017: 2006
5	Biochemical Oxygen Demand (BOD)	mg/L	74	100	IS 3025 (Part 44), RA 2014: 1993
6	Oil & Grease	mg/L	<5	10	IS 3025 (Part 39), RA 2014: 1991
7	Sulphate, SO4	mg/L	179	1000	IS 3025 (Part 24), RA 2014: 1986
8	Chloride	mg/L	576	600	IS 3025 (Part 32), RA 2014: 1988
9	Ammonical Nitrogen	mg/L	<0.5	50	IS 3025 (Part 34), RA 2014: 1988
10	Percent Sodium	%	<0.1	60	IS 3025 (Part 45), RA 2014: 1993
11	Phenolic compounds	mg/L	<0.001	5.0	IS 3025 (Part 43), RA 2014: 1992
12	Phosphate (total)	mg/L	<0.1	5	IS 3025 (Part 31), RA 2014: 1988
13	Sulphide	mg/L	<0.1	2	IS 3025 (Part 29), RA 2014: 1986
14	Metal-Chromium	mg/L	<0.05	0.10	IS 3025 (Part 52), RA 2014: 2003
15	Bioassay Test	%	92	90% survival of fish after 96 hours in 100% effluent	APHA 23rd Ed. 3112 B

^{#:} As per MPCB Consent

Opinion/Observation: Analyzed parameters in above tested sample are within limit as per specified standard.

For SKYLAB ANALYTICAL LABORATORY

(Authorized Signatory)

END OF REPORT

- 1. This report reflects findings only for the above sample tested/monitored and only for time and place of monitoring/testing.
- 2. This report is confidential & cannot be re-produced in part or full without permission of SKYLAB Analytical Laboratory.
- 3. Any attempt of forgery or misleading use of this report by any person/organization etc will attract suitable legal action against them by Skylab Analytical Laboratory.

Maharashtra Pollution Control Board

महाराष्ट्र प्रदूषण नियंत्रण मंडळ

FORM V

Environmental Audit Report for the financial Year ending the 31st March 2019

Unique Application Number

MPCB-ENVIRONMENT_STATEMENT-0000019777

Company Information

Company Name

Nouryon Chemicals India Private Limited

Address

Nouryon Chemicals India Private Limited Plot E- 18,19,20 & C-61(Part/Part) Mahad, Dist.-

Raigad, Maharashtra, INDIA

Plot no

E- 18,19,20 & C-61(Part/Part)

Capital Investment (In lakhs)

3815

Pincode 402302

Telephone Number

9049173399

Region

SRO-Mahad

Last Environmental statement

submitted online

Submitted ominie

Consent Valid Upto

28.02.2021

yes

Application UAN number

NΑ

Taluka

Mahad

Scale Large

Person Name Sanjay G. Salunke

Fax Number

02145 232148

Industry Category

Red

Red

Consent Number

Submitted Date

25-09-2019

Village Khaire

City

Mahad

DesignationManager HSE&S

Email

sanjay.salunke@nouryon.com

Industry Type

R22 Organic Chemicals manufacturing

иом

MT/A

MT/A

Consent Issue Date

BO/AST/EIC No.RD-2919-14/Raigad/AMD/CC-3700 16.03.2016

Product Information

Product NameConsent QuantityActual QuantityOrganic Peroxide(Pure)1197.3630.6Refilling of Metal Alkyls800335.97

By-product Information

By Product NameConsent QuantityActual QuantityUOMNANANACMD

1) Water Consumption in m3/day

Water Consumption for Consent Quantity in m3/day Actual Quantity in m3/day **Process** 635 235 Cooling 100 33 Domestic 55 20 All others 37 100 **Total** 890 325

1) Effluent Generation	in CMD / MLD						
Particulars Effluent discharged		Conser 648	nt Quantity	Act i 303.	ıal Quantity 7	UOM CMD	
· · · · · · · · · · · · · · · · · · ·						-	
2) Product Wise Proce process water per uni		mption (cubic meter of					
Name of Products (Pro			During the Pres	vious	During the curren Financial year	t UO	
Organic Peroxide			64	78		CMD	
3) Raw Material Consu		nption of					
raw material per unit Name of Raw Material		During the Previ	ous financial	During	the current Financ	ial UO	
A 24 data 24		Year		year			
Acid chloride		0.34 to 0.80		0.35 to			
TBHP		0.65 to 0.74		0.52 to			
Chloroformates		0.14 to 0.66		0.36 to			
Hydrogen peroxide		0.02 to 0.15		0.11to (0.15		
TMBH		0.3		0.31			
NaOH		0.10 TO 0.94		0.31 TO	0.94		
КОН		0.07 to 0.09		0.09			
4) Fuel Consumption							
		Consent quantity 100	Actual Qua 72		antity	UOM	
Pollution discharged t	o environment/u	nit of output (Parameter as s	pecified in the (consent i	ssued)		
[A] Water Pollutants Detail	Quantity of Pollutants discharged (kL/day)	Concentration of Pollutar discharged(Mg/Lit) Excep PH,Temp,Colour		on from bed rds with			
	Quantity	Concentration	%variat		Standard	Reaso	
рН	NA	7.10	NA		5.5 to 9	NA	
Suspended solids	NA	3	NA		100	NA	
BOD 3 days 27 Deg C	NA	54	NA		100	NA	
COD	NA	183	NA		250	NA	
Oil & grease	NA	4	NA		10	NA	
Total ammocial nitrogen	NA	0.2	NA		50	NA	
rotal aminocial merogen		1967	NA		2100	NA	
_	NA	1907	147 (
Total dissolved solids Sulphate	NA NA	223	NA		1000	NA	
Total dissolved solids					1000 60	NA NA	

0.02

0.5

0.23

Chromium (Hexavalent) NA

 $\mathsf{N}\mathsf{A}$

NA

Sulphide (as S)

Phosphate (as P)

0.1

2

5

NA

NA

NA

NA

NA

NA

Bio assy test	NA	90 % Survival o in 100% of efflu	f fish after 96 hrs ent	NA	fish af	Survival of ter 96 hrs in of effluent	NA
[B] Air (Stack) Pollutants Detail	Quantity of Pollutants discharged (kL/day Quantity	Concentration of discharged(Mg/ y) Concentration		from pro	age of variation escribed ds with reasons ion	Standard	Reason
PM	NA	51.12		NA		150	NA
SO2	NA	0.55		NA		NA	NA
NOX	NA	71.3		NA		NA	NA
HAZARDOUS WAS		· Drovious Einomeiol		Fotal During	Current Einemaiel		иом
0	0 0	Previous Financial y	year i	_	Current Financial	year	UOM
2) From Pollution Hazardous Waste 5.1 Used or spent o			Total During I Financial year		Total During C Financial year 334	urrent	иом
34.1 Chemical-cont	aining residue arising	from decontamination.	. 95		700		
20.2 Spent solvents	5		2400		1200		
35.3 Chemical slud	ge from waste water t	reatment	3025		1515		
31.1 Process residu	ie and wastes		95		475		
SOLID WASTES 1) From Process Non Hazardous W Solid waste	Vaste Type Total Do	uring Previous Finan	cial year	Total Durin 120	g Current Financi	al year	UOM MT/A
2) From Pollution Non Hazardous W	Control Facilities Vaste Type	Total During Previou	ıs Financial yea	r Total D	uring Current Fina	ancial year	иом
NA		0	,	0	-	•	MT/A
3) Quantity Recyc	cled or Re-utilized w	rithin the					
Waste Type		Total l year	During Previous		Total During Curro year	ent Financia	I UOM
0		•			_		NAT / A

90 % Survival of fish after 96 hrs

NA

90 % Survival of

Please specify the characteristics(in terms of concentration and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

0

MT/A

0

1) Hazardous Waste

0

Bio assy test

NA

Type of Hazardous Waste Generated	Qty of Hazardous Waste	UOM	Concentration of Hazardous Waste
5.1 Used or spent oil	334		NA
34.1 Chemical-containing residue arising from decontamination.	700		NA
20.2 Spent solvents	1200		NA
35.3 Chemical sludge from waste water treatment	1515		NA

2) Solid Waste

Type of Solid Waste Generated Qty of Solid Waste UOM Concentration of Solid Waste

Decontaminated metal drums, Plastic wrappers, scrap 120 MT/A NA

Impact of the pollution Control measures taken on conservation of natural resources and consequently on the cost of production.

Description	Reduction in Water Consumption (M3/day)	Reduction in Fuel & Solvent Consumption (KL/day)	Reduction in Raw Material (Kg)		Capital Investment(in Lacs)	Reduction in Maintenance(in Lacs)
NA	0	0	0	242660	0	0

Additional measures/investment proposal for environmental protection abatement of pollution, prevention of pollution.

[A] Investment made during the period of Environmental

Statement

Detail of measures for Environmental Protection Environmental Protection Capital Investment
Measures (Lacks)

Environment continual improvement measure Byproduct recovery unit from effluent 2684

[B] Investment Proposed for next Year

Detail of measures for Environmental Protection Environmental Protection Measures Capital Investment (Lacks)

A NA

Any other particulars in respect of environmental protection and abatement of pollution.

Particulars

NA

Name & Designation

Sanjay G.Salunke, Manager HSE&S

Towards sustainable growth

Mumbai Waste Management Limited **Certificate**

MIS. Akzo Nobel India 1td.

is a registered member of

CHW-TSDF at MIDC, Taloja

for safe & secure disposal of

Hazardous Waste.

Membership no.: MWML - HzW -MHD.-HJA...

This Certificate is valid up to

March, 31st, 2020

Somnath Malgar Head - MWML

Director

